
Formal Models of Reproduction:

from Computer Viruses to Artificial Life

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy

by

Matthew Paul Webster

October 2008

Primary Supervisor: Dr. Grant Malcolm

Department of Computer Science

University of Liverpool

Secondary Supervisor: Dr. Alexei Lisitsa

Department of Computer Science

University of Liverpool

Internal Examiner: Prof. Michael Fisher

Department of Computer Science

University of Liverpool

External Examiner: Prof. Lt. Col. Éric Filiol

Virology and Cryptology Laboratory

Ecole Supérieure et d’Application des Transmissions

Contents

Abstract vii

Acknowledgements ix

Preface xi

1 Introduction 1

1.1 Reproducing Programs. 1

1.1.1 Motivations of Computer Virus Writers 2

1.1.2 A Short History of Computer Viruses 3

1.1.3 Academic Study of Computer Viruses 3

1.1.4 Detection of Malware . 5

1.1.4.1 Static Analysis . 6

1.1.4.2 Dynamic Analysis . 7

1.2 . . . and Other Reproducing Things . 8

1.3 Formal and Informal Approaches to Problem Solving 10

1.4 Overview of the Thesis . 11

1.4.1 Computer Viruses and Artificial Life 13

1.4.2 A Note on the Inclusion of Computer Virus Code 14

2 Formal Detection of Metamorphic Computer Viruses 15

2.1 Introduction . 15

2.1.1 Algebraic Specification . 16

2.1.2 Chapter Overview . 16

2.2 Metamorphic Computer Viruses . 17

2.2.1 Types of Code Metamorphosis 18

2.2.1.1 Junk Code Insertion . 18

2.2.1.2 Variable Renaming . 19

2.2.1.3 Unconditional Jump Insertion 19

2.2.1.4 Instruction Reordering 19

i

2.2.1.5 Pseudo-Conditional Jump Insertion 19

2.2.1.6 Arithmetical/Boolean Mutation 20

2.2.1.7 Payload Mutation . 20

2.2.1.8 Pseudo Branching . 20

2.3 Algebraic Specification in Maude . 20

2.4 Specifying Intel 64 Assembly Language 22

2.4.1 Specifying the Syntax of Intel 64 23

2.4.2 Specifying the Semantics of Intel 64 24

2.4.2.1 Intel 64 Stack Semantics 26

2.4.3 Using the Maude Specification as an Interpreter 27

2.5 Equivalence of Instruction Sequences . 28

2.6 Dynamic Analysis . 31

2.6.1 Example 1: Win95/Bistro . 31

2.6.2 Example 2: Win9x.Zmorph.A . 35

2.7 Static Analysis . 36

2.7.1 Equivalence in Context . 36

2.7.2 Examples Using Win9x.Zmorph.A 38

2.8 Applications to Detection of Metamorphic Viruses 41

2.8.1 Dynamic Analysis . 41

2.8.1.1 Signature Equivalence 41

2.8.1.2 Signature Semi-Equivalence 42

2.8.2 Static Analysis . 42

2.8.2.1 Formally-Verified Equivalent Code Libraries 42

2.8.2.2 Equivalence in Context 43

2.8.3 Combination With Other Approaches 44

2.9 Summary . 44

2.9.1 Related Work . 45

2.9.1.1 Control- and Data-Flow Analysis 46

2.9.1.2 Semantics Template Matching 48

2.9.1.3 Program Rewriting and Normalisation 49

2.9.1.4 Metamorphic Engine Analysis 51

2.9.1.5 Neural Network Approaches 52

2.9.1.6 Industrial Approaches 52

2.9.2 Comparisons with Related Work 53

2.9.2.1 Static and Dynamic Analysis 53

2.9.2.2 Formal and Informal Approaches 54

2.9.2.3 Generality and Readiness for Application 56

2.9.2.4 Applications Beyond Computer Virology 57

3 Formal Affordance-based Models of Reproduction 59

3.1 Introduction . 60

3.1.1 The Theory of Affordances . 60

3.1.2 Structure of the Chapter . 61

3.2 One Possible Classification Scheme . 62

3.2.1 Type I Reproducers . 64

3.2.1.1 Example: von Neumann Reproducing Automaton . . . 64

3.2.1.2 Example: Langton’s Loop 64

3.2.2 Type II Reproducers . 65

3.2.2.1 Example: Tape from von Neumann’s Reproducing Automaton 65

3.2.2.2 Example: T4 Bacteriophage 66

3.2.2.3 Example: Source Code Computer Virus 66

3.2.3 Type III Reproducers . 66

3.2.3.1 Example: Compiler . 67

3.2.3.2 Example: Damaged Cell 67

3.2.4 Type IV Reproducers . 67

3.2.4.1 Example: Game of Life Gliders 67

3.2.4.2 Example: The Photocopy 68

3.2.5 Questions about Affordance-based Classification 68

3.2.5.1 The Assisted Reproduction Conjecture 68

3.2.5.2 The Unassisted Reproduction Conjecture 69

3.2.5.3 Varying Degrees of Assistance 70

3.2.5.4 Other Means of Classifying Reproducers Using Affordances 71

3.3 Towards Formal Reproduction Models 71

3.4 Formal Models of Reproduction . 72

3.4.1 Classifying Reproduction Models 75

3.4.2 Refinement of Reproduction Models 78

3.4.3 Allowed Refinements of Reproduction Models 82

3.5 The Unassisted and Assisted Reproduction Theorems 82

3.5.1 The Unassisted Reproduction Theorem 83

3.5.2 The Assisted Reproduction Theorem 86

3.5.3 Further Classification Using Aspects 88

3.6 Further Examples . 90

3.6.1 Langton’s Loop . 90

3.6.2 Conway’s Game of Life Gliders 93

3.7 Summary . 94

3.7.1 Related Work . 95

3.7.1.1 Löfgren’s Approach to Modelling Reproduction 96

3.7.1.2 A Universal Framework for Self-Replication 98

3.7.1.3 Autopoiesis . 99

3.7.1.4 Reproduction in Cellular Automata 100

3.7.1.5 Reproduction Classification by Dawkins 102

3.7.1.6 Reproduction Classification by Taylor 102

3.7.1.7 Reproduction Classification by Luksha 104

3.7.2 Comparisons with Other Approaches 105

3.7.2.1 Comparison with Löfgren’s Approach 105

3.7.2.2 Comparison with A Universal Framework 106

3.7.2.3 Comparison with Cellular Automata 107

3.7.2.4 Arbitrariness of Assistance 108

3.7.2.5 Sexual Reproduction 110

3.7.2.6 Triviality and Non-triviality 110

3.7.2.7 Comparison with Multiagent Systems 112

3.7.2.8 Comparison with Formal Methods for Concurrent Systems113

3.7.3 Comparison with Rosen’s Ideas on Life 114

3.7.3.1 Life Itself . 114

3.7.3.2 Rosen’s Paradox . 115

3.7.4 Reproduction as Preservation of Information Over Time 116

3.7.5 Further Application to Artificial Life 118

4 Formal Affordance-based Models of Computer Viruses 121

4.1 Introduction . 121

4.1.1 Chapter Overview . 122

4.2 Computer Virus Reproduction Models 123

4.2.1 Formal Models of Computer Virus Reproduction 123

4.2.2 Classifying Computer Viruses . 126

4.2.3 Modelling a Unix Shell Script Virus 127

4.2.4 Modelling Virus.VBS.Archangel 129

4.2.5 Modelling Virus.Java.Strangebrew 132

4.2.6 Modelling an Assembly Language Computer Virus 136

4.3 Automatic Classification . 138

4.3.1 Behaviour Monitoring and Classification 140

4.3.2 Static Analysis of Virus.VBS.Baby 141

4.3.3 Static Analysis of Virus.VBS.Archangel 143

4.3.4 Dynamic Analysis of Virus.VBS.Baby 144

4.3.5 Metrics for Comparing Assisted Viruses 149

4.3.5.1 A Simple Metric for Comparing Assisted Viruses 149

4.3.6 Comparing Behaviour Monitor Configurations 150

4.3.7 Algorithms for Automatic Classification 151

4.4 Summary . 152

4.4.1 Related Work . 153

4.4.1.1 Classification by Adleman 154

4.4.1.2 Classification by Bonfante et al 155

4.4.1.3 Phylogenetic Classifications 156

4.4.1.4 Classification by Spafford 157

4.4.1.5 Classification by Weaver et al 159

4.4.1.6 Industrial Classifications 160

4.4.2 Comparisons with Related Work 162

4.4.2.1 Comparison with Formal Classifications 162

4.4.2.2 Comparison with Informal Classifications 164

4.4.2.3 Classification of Models versus Classification of Computer Viruses164

4.4.2.4 General Comments on Affordance-based Classification . 166

5 Conclusion 169

5.1 Novel Contributions . 169

5.2 Directions for Future Research . 171

5.2.1 Complexity of Detecting Metamorphic Computer Viruses 172

5.2.2 Further Detection of Metamorphic Computer Viruses 173

5.2.3 Detection of Virtualization by Metamorphic Code Generation . . 174

5.2.4 Modelling Reproduction at Different Abstraction Levels 176

5.2.5 Metrics for Reliance on External Agency 179

5.2.6 Strategies for Reproduction . 179

5.2.7 Advanced Metrics for Assisted Computer Virus Classification . . 180

5.2.8 Evaluation of Anti-virus Techniques 181

5.2.9 Affordance-based Models and Multi-Reproducers 183

A Intel 64 Specification 185

B Unix Computer Virus Specification 203

C Bacteriophage Specification 207

D Anti-Virus Specification 215

List of Figures 221

Bibliography 223

Index 239

Abstract

Formal Models of Reproduction:

from Computer Viruses to Artificial Life

Matthew Paul Webster

In this thesis we describe novel approaches to the formal description of systems which

reproduce, and show that the resulting models have explanatory power and practical

applications, particularly in the domain of computer virology. We start by generating

a formal description of computer viruses based on formal methods and notations de-

veloped for software engineering. We then prove that our model can be used to detect

metamorphic computer viruses, which are designed specifically to avoid well-established

signature-based detection methods. Next, we move away from the specific case of re-

producing programs, and consider formal models of reproducing things in general. We

show that we can develop formal models of the ecology of a reproducer, based on a for-

malisation of Gibson’s theory of affordances. These models can be classified and refined

formally, and we show how refinements allow us to relate models in interesting ways.

We then prove that there are restrictions and rules concerning classification based on

assistance and triviality, and explore the philosophical implications of our theoretical

results. We then apply our formal affordance-based reproduction models to the detec-

tion of computer viruses, showing that the different classifications of a computer virus

reproduction model correspond to differences between anti-virus behaviour monitoring

software. Therefore, we end the main part of the thesis in the same mode in which we

started, tackling the real-life problem of computer virus detection. In the conclusion we

lay out the novel contributions of this thesis, and explore directions for future research.

vii

Acknowledgements

I thank my Ph.D. supervisor, Dr. Grant Malcolm, for his wisdom, encouragement and

indispensable advice throughout the course of my studies. Most of the work in this

thesis was shaped in some way by Grant, and I don’t think any aspiring scientist could

find a better mentor.

I am much indebted to my secondary Ph.D. supervisor, Dr. Alexei Lisitsa, and my

thesis adviser, Prof. Michael Fisher, who have given me invaluable guidance through-

out. I thank Dr. Ray Paton, who helped me a great deal when I applied to study for

a Ph.D. There are many other people in the Department of Computer Science at the

University of Liverpool who have helped me over the years — certainly far too many

to name here. Suffice it to say, I owe this great institution a huge debt of thanks.

I must also thank Prof. Lt. Col. Éric Filiol, whose generous support, advice and

encouragement are very much appreciated.

Finally, I must mention my partner, Katie: a person whose impact on me is so

profound that I have difficulty even beginning to express it. For all your love, support

and psychological debugging — thank you.

— Matt Webster, October 2008

ix

Preface

During the final year Honours project for my Bachelor’s degree at the University of

Liverpool, for which I studied under the supervision of Dr. Alexei Lisitsa, I created a

formal model of computer viruses using a formalism known as Abstract State Machines.

This piqued my interest in the research area at the intersection of computer science

and biology. At first I was interested particularly in the class of reproducing programs,

which includes computer viruses, network worms, reproducing structures within cellular

automata, artificial life simulations, and so on. However, the distinction between repro-

ducing programs and reproducers (i.e., things that reproduce) in general is blurred, as

we can apply the computational paradigm to biological, psychological, economical and

other domains in which reproducing forms can be identified. For example, we can see

a reproducing organism as an automaton, programmed by genes with the sole intent of

creating copies of those genes. My interest in reproducing programs expanded naturally

to an interest in computational approaches to the problem of describing reproduction.

Biological examples of reproduction are obvious and numerous, and include most

living things. Psychological examples include memes, a term used to describe repro-

ducing thought-forms such as catchy tunes or methods for ensuring survival. In the

field of economics, firms have been identified as a kind of reproductive system. There

are even more examples of reproduction in fields such as chemistry, e.g., seeding crys-

tals or fire. One might even think of fixed points of mathematical functions as being

a kind of reproduction, or of modelling reproduction at a very abstract level. The

list of reproducers goes on and on. In fact, reproduction is encountered so commonly

that one begins to suspect that either (i) it is a universally re-occurring (or perhaps,

reproducing?) phenomenon; (ii) something about the psychological make-up of human

beings makes us prone to observing cyclic phenomena in a way that we perceive as

reproductive; or (iii) both of the above are true.

In order to focus my research, I identified a number of key questions that I wanted

to address in order to reach a greater scientific understanding of reproductive systems:

1. Are there any better means of detecting reproducing malware?

xi

2. What do we mean by “replication” and “reproduction”?

3. What, if any, are the bounds on replication and reproduction?

4. Are there different kinds of reproduction?

5. What kinds of formalisms are best suited to describe replicative and reproductive

systems?

6. How can we describe reproduction differently in different systems?

7. Are there any formalisms in which reproduction (or some variant of it) is not

expressible?

It was largely the pursuit of answers to the above questions that has directed my

Ph.D. research, which has in turn generated the material in this thesis. Question 1

is addressed in Chapters 2 and 4, in which methods for malware detection are dis-

cussed. Questions 2–6 are addressed in Chapters 3 and 4, in which affordance-based

reproduction models are introduced and discussed. Question 7 still remains untackled

within this thesis, and is, perhaps, a direction for future research. The presentation of

this thesis, therefore, follows an arc. In Chapter 2 we start “in the trenches”, analysing

computer viruses and developing ways to detect them. In Chapter 3 we move away from

the specifics of computer viruses to consider reproduction in general. We present our

formal affordance-based reproduction models, which we then take with us into Chapter

4, in which we show how their classification mirrors the technical problem of detect-

ing computer viruses using behaviour monitors. Therefore we end in the same place

we started: developing techniques for securing computer systems against unwanted

reproducing programs.

Whilst I have attempted to answer most of the questions above, I certainly do not

claim to have answered them completely. However, I hope that my humble attempts

to answer these questions in the forthcoming chapters are a testament to the incred-

ible complexity and diversity of problems at the intersection of computer science and

biology, and an encouragement to other researchers to engage in the fascinating work

to be conducted there.

Matt Webster, October 2008

Chapter 1: Introduction

The aim of this thesis is to describe novel approaches to the formal description of sys-

tems which reproduce, and show that the resulting models have explanatory power and

practical applications, particularly in the domain of computer virology. We start by

generating a formal description of computer viruses based on formal methods and nota-

tions developed for software engineering. We then demonstrate that our model can be

used for detecting unwanted reproducing software. Next, we move away from the spe-

cific case of reproducing programs, and instead consider formal models of reproducing

things and their environments, showing that we can classify and refine these models in

interesting ways. Finally, we take these formal models and apply them to the real-life

practical problem of detecting the behaviour of unwanted reproducing software, show-

ing that the different classifications within the formal model correspond to differences

between behaviour monitoring software. Therefore, the aim of the next two sections is

to provide the reader with a broad background knowledge and history of the study of

reproducing programs, and reproduction in general. In Section 1.3, we describe what

we mean by formal techniques, and in Section 1.4, we end the chapter with an overview

of the rest of the thesis.

1.1 Reproducing Programs. . .

We shall begin this section with an overview of some informal terms used in the litera-

ture. As with any informal terms, there is some laxity in the definition, and therefore

the purpose of this discussion is to define and clarify these terms, as they will be used

throughout this thesis.

Malicious software, or malware, is a general term that captures the notion of danger-

ous or unwanted programs, that typically execute without the legitimate users’ consent.

(Of course, the writer of malware becomes effectively an illegitimate user of any com-

puter system that becomes a host to their malware.) Reproducing programs are a kind

of computer program that are able to create copies of themselves within other stored

programs. A computer virus is a reproducing program, and a worm is a program that

1

Chapter 1: Introduction

is able to create a copy of itself in a stored program which may be located elsewhere in

a network of computers. Therefore, by these informal definitions, worms are a type of

computer virus.

It is important to clarify that not all computer viruses are malicious; in fact, the

early theoretical history of computer virology was to the contrary. One of the first

descriptions of a computer virus in the academic literature was the work by Shoch

& Hupp on the worm programs, which they proposed as an autonomous form of dis-

tributed computation, in which a program designed to solve a lengthy task could create

a copy of itself, also capable of reproduction, within another node on the network in

order to divide the work and shorten the length of time needed [131]. The same prin-

ciple was also used for routine maintenance tasks (such as network diagnostics). The

worm program was carefully designed to avoid impinging on other users; it would only

commandeer a computer if it was not being used, and would retreat as soon as a user

required it. Cohen also suggested several positive applications of computer viruses,

including a compression virus that compresses executables when it spreads, thereby

freeing up storage space [31, 33]. When the infected executable is run, the virus de-

compresses the file. Depending on the relative speeds of processing and storage access,

the virus can even speed up the time taken to execute an infected program.

Therefore, not all computer viruses are malware. Since the term “malware” captures

the notion of malicious software, any program written with the intent to access a

computer against the wishes of the legitimate user must be considered to be malware.

It is obvious that these programs are not necessarily reproducing, and therefore we

know that not all malware programs are reproducing programs.

1.1.1 Motivations of Computer Virus Writers

We cannot ignore the fact that computer viruses are a product of human ingenuity, and

though sociological and criminological factors play a part in mitigating the threat to

our computer systems, we must assume that computer viruses will continue to thrive on

our computers and networks. A similar assumption seems to permeate the academic

literature on computer viruses, in that there is little mention of the virus writers1;

viruses are described as though they were naturally-occurring phenomena that we must

learn to control. For this reason, the rest of this thesis will discuss computer viruses

in the detached manner used in much of the literature, without mention of the people

who write viruses, or their motivations.

1Despite this trend, there has been some interesting work on the psychology and sociology of malware
writers by Gordon, e.g., [63].

2

1.1 Reproducing Programs. . .

1.1.2 A Short History of Computer Viruses

Computer viruses came to prominence during the personal computer revolution of the

1980s [139]. It is likely that many of the first computer viruses were written as an

intellectual game, the idea of a computer program that reproduces being a computa-

tional curiosity. Indeed, Elk Cloner, one of the first computer viruses, was created

by an American high school student as a prank [38]. Since then, computer viruses

have grown dramatically in technical sophistication, destructiveness and number, and

the commonly-held belief in the computer security community is that this trend will

continue [48]. The threat to computer systems posed by viruses has already spawned

a multi-billion US dollar anti-virus software market, as well as causing billions of US

dollars of damage all over the world [62, 2]. Therefore the development of technical

solutions to the problem of detecting malware, such as those described in this thesis, is

a timely and crucial part of computer science.

1.1.3 Academic Study of Computer Viruses

We have seen that computer viruses are (often harmful) computer programs that re-

produce autonomously through computer file systems. In general, they are segments

of a stored program that, when executed, are able to create a copy of themselves in

another stored program. The canonical formal description of computer viruses was

given by Cohen [32], in which computer viruses are described as a class of Turing ma-

chine strings capable of reproducing themselves (see Figure 1.1). In this thesis we use

Cohen’s definition when we refer to computer viruses.

Whilst the study of computer viruses began in formal, abstract, theoretical terms,

much human labour has since been expended in the generation of software tools for the

detection and removal of reproducing malware, more commonly known as anti-virus

software. A common misconception is that computer viruses are simply an information

security problem, like stack buffer overflows [113] or denial-of-service (DoS) [23] at-

tacks, i.e., a contemporary problem best left for industry, or the vendors of commercial

software, to solve. In fact, computer viruses are inherent in stored program comput-

ers, since they spread from program to program over time. Most modern computers

are based on the stored program (von Neumann) model, and are therefore vulnerable

to illicit reproducing programs. As the ability to process information increases, and

the financial cost of computers decreases, we expect to reach a stage of ubiquity, or

pervasiveness, at which point computer systems will be fully integrated into everyday

life [67]. The control of reproducing programs across widespread, networked, stored

program computers is a significant challenge. The challenges faced by researchers in

3

Chapter 1: Introduction

For all M and V ,

the pair (M, V) is a viral set if and only if:

V is a non-empty set of Turing machine sequences and M is a Turing machine and

for each computer virus v ∈ V , for all histories of machine M ,

For all times t and cells j

if

the tape head is in front of cell j at time t and

M is in its initial state at time t and

the tape cells starting at i hold the virus v

then

there is a virus v′ in V , a time t′ > t, and place j′ such that

at place j′ far enough away from v

the tape cells starting at j′ hold virus v

and at some time t′′ between time t and time t′

v′ is written by M .

Figure 1.1: Cohen’s formal definition of computer viruses [32].

computer virology are also closely related to other disciplines. For instance, metamor-

phic computer viruses employ code obfuscation techniques to hide the intent of their

code from static analysis detection techniques like signature scanning. The techniques

for detecting metamorphic computer viruses are therefore related to the functions re-

searched in subjects such as code optimisation and program transformation, in which

code is mutated for different reasons.

Another common misconception is that research into computer viruses and their

detection is likely to attract unwanted interest from those able or willing to create

computer viruses, or that descriptions of computer viruses in the literature may provide

ammunition to computer virus writers. The implication of this point of view is that

open research into computer virology is a potential security risk. This attitude is in clear

violation of one of the most fundamental tenets of cryptography, Kerckhoff’s principle,

which says that a cryptographic system should not depend on secrecy, and it should be

able to fall into the enemy’s hands without disadvantage. As Schneier describes,

“. . . Kerckhoffs’s principle applies beyond codes and ciphers to security sys-

tems in general2: every secret creates a potential failure point. Secrecy,

in other words, is a prime cause of brittleness — and therefore something

likely to make a system prone to catastrophic collapse. Conversely, openness

provides ductility.” [100]

Therefore, the application of Kerckhoff’s principle to computer virology means that

2Emphasis added.

4

1.1 Reproducing Programs. . .

the details of the means by which computer viruses operate, and the means by which

we defend our computer systems from unwanted code (which are intimately linked),

should not be kept secret, and the open publication of information about computer

viruses promotes the development of secure computer systems3.

The growing sophistication of computer viruses, combined with the immediate secu-

rity challenges posed by pervasive computing [67, 120, 145, 166, 107, 121], indicate the

need for a precise, formal and open understanding of reproducing programs. The anti-

virus software produced by industry serves an obvious present-day security concern,

but the knowledge of the basic principles of computer viruses, their dangers, limita-

tions and behaviour, must not be known only by a select group of industrial specialists,

but rather must be open and easily accessible. This is essential to ensure the long-term

security of our computer systems from reproducing programs [45].

1.1.4 Detection of Malware

Detection of computer viruses is a difficult problem. Cohen proved that detection

of computer viruses in general is undecidable [32]; Chess & White proved that there

exist computer viruses for which there are no detection algorithms that work without

false positives [26]; Filiol [40] and Filiol & Josse [47] established the characteristics of

some of these undetectable viruses; results from Adleman [4], Borello et al [17, 18],

Spinellis [136] and Zuo et al [169, 72] show that even where computer virus detection

is decidable, it can be intractable for certain computer viruses.

Despite the existence of computer viruses that are intractable or impossible to

detect, many computer viruses are not so sophisticated, and can be detected tractably

and reliably. Therefore, a primary motivation within the research into reproducing

programs is the development of means of detection of those programs. Naturally, much

research on this theme is conducted by the vendors of anti-virus software, but the

specific details of the implementation of anti-virus software are often left unpublished4

However, in recent years there has been a dramatic increase in the amount of literature

published on computer virus detection methods, both by the academic and commercial

communities. For example, the Journal in Computer Virology (published by Springer)

was launched in 2005. Around the same time, Ször published a book on the art of

computer virus research and defence, giving details of the many ways in which malware

can be detected by commercial anti-virus software [139], and Filiol published a book on

the formal foundations of computer virology [43]. Filiol described the different malware

3An in-depth discussion of this position can be found in the Preface of [43].
4This is possible due to the fact that they represent the trade secrets of the anti-virus software

vendors, and careless talk is at the expense of commercial advantage.

5

Chapter 1: Introduction

detection techniques from a more abstract position, based on a taxonomy of the various

approaches. The overview of the state of the art of malware detection presented here

is based on this abstract perspective.

Malware detection techniques can be divided into those based on static analysis, in

which the executable code within stored programs is analysed as data, and dynamic

analysis, in which programs are analysed during execution. All methods of malware

detection are prone to errors of two kinds5:

• False positive: a method that should only identify a particular set of programs

instead identifies a program outside that set.

• False negative: a method that should identify a set of programs fails to identify

at least one of the elements in the set.

We will now describe the various methods of malware detection, together with their

advantages and disadvantages. As we shall see, a combination of the many different

computer virus detection methods must be used in order to ensure the best possible

protection.

1.1.4.1 Static Analysis

Signature scanning involves the extraction of signatures from known computer viruses.

The signatures consists of numeric data, which in the ideal case uniquely identify a

particular virus. Signatures must be sufficiently incriminating, so that they identify a

particular virus or variant, and non-incriminating, so that they do not identify another

virus or uninfected program. The advantages of signature scanning include a high

efficiency, as it can be implemented using much-researched string-matching algorithms,

and a low number of false positives. The main disadvantage is that this technique relies

on a signature database, which can only contain signatures of known viruses. If the

signature database is not updated regularly, or if the repository from which updates

are made is corrupted, the effectiveness of the technique is severely compromised.

Spectral analysis is based on a statistical analysis of the varying occurrences of dif-

ferent instructions within a program. Computer viruses tend to have increased numbers

of certain instructions, meaning that the relative occurrence of these instructions can be

used as an heuristic for computer virus detection. For example, Filiol presents the Intel

64 assembly language instruction xor x, x which is commonly used to set the value of

variable x to zero. Some metamorphic computer viruses will change this instruction to

a less commonly used instruction, e.g., mov x, 0 which has the same effect. Therefore

5These definitions are given formal meaning in the domain of computer virus detection by Filiol &
Josse [47].

6

1.1 Reproducing Programs. . .

a higher-than-normal occurrence of the latter instruction could be used to flag a certain

program as suspect. The main advantage of this approach is that it can be used to

detect previously-unseen computer viruses. However, it is an heuristic, and therefore

can often result in false positives.

Heuristic analysis is where a suspect program is checked for the occurrence of a

particular set of instructions that correspond to some malicious behaviour. Heuristic

analysis can therefore be seen as a kind of spectral analysis that is focussed upon a

single instruction or instruction sequence. For example, within Unix shell scripts the

statement rm -R /* deletes every file on the current device, and has few legitimate uses.

Therefore, a suspect program containing such a command can be flagged as potential

malware. The advantages and disadvantages of this approach are similar to spectral

analysis: previously-unseen computer viruses can be detected, but there is a significant

risk of false positives.

File integrity checking involves the creation of a database in which every sensitive

file’s name is stored along with the result of a hash function, e.g., MD5 or SHA-1. The

hash function assigns different numbers to different inputs, meaning that any modifica-

tion of an input results in a different output. The aim of this technique is to associate

with executable files some value, which is checked regularly so that any modification

of an executable file is detected. Since many computer viruses modify files when they

infect them, file integrity checking can be used to detect illicit activity by a computer

virus. In principle, file integrity checking can be used to detect any attempt by a

computer virus to infect another file. However, there are several disadvantages. First,

malware may be able to corrupt the database so that the number corresponding to a

file is not changed upon infection. Second, there may be legitimate processes within

the operating system which must modify executable files, e.g., compilers, and therefore

there must be some authentication system by which these processes can register them-

selves with the file integrity checker as legitimate. Therefore, malware may be able to

fake legitimacy. Third, not all computer viruses modify stored programs: companion

viruses and computer viruses which exist only in memory are examples. Fourth, the

hash functions used may be insecure, allowing the computer virus to fake legitimacy.

Fifth, there may be numerous locations for data whose integrity is not checked, such

as temporary or configuration files. In addition, the need to check legitimacy of file

modification operations may result in false positives.

1.1.4.2 Dynamic Analysis

Behaviour monitoring involves the constant presence of a behaviour monitor, usually as

part of an anti-virus program. Suspect programs can be monitored for activities often

7

Chapter 1: Introduction

exhibited by computer viruses, including opening executable files in read/write mode,

modification of sensitive system files or becoming memory-resident. A main advantage

of behaviour monitoring is that previously-unseen computer viruses can be detected,

and even prevented from infecting any other files or executing payloads. There are

several disadvantages. First, computer viruses may not access system resources in

ways expected by the behaviour monitor. Second, there is a considerable demand on

system resources in the constant monitoring of behaviour. Third, false positives are

likely as legitimate programs, e.g., compilers, may display suspicious activity.

Code emulation involves the execution of suspect programs within a “sandbox” in

order to determine the presence of a computer virus. A sandbox is a virtual machine,

an isolated region of memory in which a computer virus could be executed without

further infections. The aim is to monitor the behaviour and observe characteristics

of computer viruses, including heuristics such as opening executable files, as well as

known features of certain computer viruses, e.g., the state of the processor stack at a

certain point in execution. Advantages of this approach include detection of computer

viruses without further infection and dynamic analysis without the constant overhead

of behaviour monitoring (i.e., code emulation detection can be performed during times

of low processor load); however, the technique relies on the correct implementation

of the sandbox, which may not be guaranteed. For instance, a computer virus could

manipulate a sandbox during execution, resulting in an infection of the main, non-

virtual computer system.

1.2 . . . and Other Reproducing Things

The concept of life is notoriously difficult to define. A textbook biological definition is

that an organised, genetic unit capable of metabolism, reproduction and evolution, is

alive [116]. However, this leaves the problem of what we mean by genetics, metabolism,

reproduction and evolution. As well as the inherent problems of loose definitions like

these, most definitions of life will either exclude some things that appear to be alive, or

include some things which don’t seem to be alive. For example, by the definition above,

a worker bee (that cannot reproduce) might not be considered to be alive, despite the

fact that, intuitively, an active, self-directed system like the worker bee would seem to

qualify as alive.

Much of mainstream biology is concerned with life as we find it, i.e., life on Earth6.

However, there are many systems which display life-like characteristics, such as metabol-

6Should we find life beyond Earth, then biology would presumably expand to incorporate the studies
of the new life forms. As it is, the study of potential extra-terrestrial life is called astrobiology .

8

1.2 . . . and Other Reproducing Things

Figure 1.2: Von Neumann’s reproducing automaton on a two-dimensional cellular
automaton grid. The universal constructor on the left reads in the “tape” on the
right, which instructs the constructor to produce a copy of itself and the tape. Image
sources: [73, 112].

ism, reproduction and evolution, but which may not be biochemical in nature. The

study of these systems is called Artificial Life [91, 7, 132].

Artificial life is therefore the study of life as it may be [7]. Much of artificial life is

concerned with the generation of mathematical and/or computational models of sys-

tems which display life-like behaviour, although it includes the documentation of the

life-like features of non-biological systems, such as firms [99] or computer viruses [135].

One of the first studies in this vein was undertaken by von Neumann, in his work

on the construction of a fully-specified reproducing automaton [149]. Von Neumann’s

automaton was highly complex, requiring computational resources so extensive that a

fully working implementation has only recently been developed [112]. Since then, cel-

lular automata have been exploited by many researchers in the field to develop models

of reproduction. Codd [30] vastly simplified von Neumann’s original model, and Lang-

ton [89] removed the requirement for universal computation. The intellectual progeny

of von Neumann’s work continue to be developed within the field of artificial life [133],

including exotic versions displaying evolution [129], sexual reproduction and parasitic

infection [111]. Other notable artificial life systems include Tierra [117, 118], Core

War [37], Cosmos [142] and related systems [133]: virtual computational environments

in which computer programs can reproduce, mutate, combine and compete [33].

The field of artificial life is wide-ranging and multi-disciplinary, taking inspiration

9

Chapter 1: Introduction

from and inspiring researchers in biology, philosophy, mathematics, artificial intelligence

and more [91, 132]. Much of the work in Chapters 3 and 4, in which we focus on a formal

approach to modelling reproduction, is closely related to the theoretical, mathematical

and philosophical branch of artificial life. As we noted earlier, reproduction is one of

the signifiers of life in most definitions, and therefore the results of this thesis may

be of interest to researchers in any of the fields listed in this section. The abstract,

non-functional approach to modelling reproduction presented in Chapters 3 and 4 is

also related to the fields of cybernetics [163] and systems theory [85], which study the

organisation of systems independent of the substrate in which they are embodied.

1.3 Formal and Informal Approaches to Problem Solving

A central theme of this thesis is the application of formal approaches to questions about

reproduction. Before we start to describe these approaches, it is necessary to describe

what we mean by a “formal approach”.

An approach to solving a problem can be said to be formal if it is based on some

logical/mathematical description of the problem and its solution. If an approach is not

formal, it is informal. The advantage of formal approaches over informal approaches

is that their logical/mathematical nature gives the potential to prove interesting prop-

erties about a system. As long as we accept the given axioms, we must accept any

conclusions which are drawn from them. Therefore, solving a problem within a formal

system is a matter of choosing which axioms we want, so that we can phrase potential

solutions to the problem as formal statements which may then be proven (incomplete-

ness allowing [57]).

Clearly, formal approaches to solving problems have advantages over informal ap-

proaches. However, there are also disadvantages. For example, if the problem that is

being solved is, by its nature, not well-defined, then it is likely that a formal system

cannot easily be developed, since formal systems require axioms to be encoded within

some language whose syntax and semantics are clear. If a formal system is possible,

then there is the problem of the amount of time and effort required to (i) generate

the formal system, and (ii) prove statements within it. So, an informal solution to a

problem can exist where a formal solution might not, and an informal solution might

be much more easily produced than a formal one. These are clear advantages of using

informal systems over formal systems.

To clarify these points one can think of the (general) difference in approaches to

solving problems in the sciences versus the humanities. In science the problems being

tackled are well-defined (in general), and therefore formal solutions are the usual goal.

10

1.4 Overview of the Thesis

However, in the humanities, there may be more nebulous questions that are not as well-

defined as those in science. Therefore, in science, formal systems are often favoured,

because the systems being analysed can be modelled formally, and the results are

conclusive. However, in the humanities, informal systems are often favoured, perhaps

because otherwise solutions to problems could not even be attempted. This difference

of approach can also be seen within science, where more general questions (such as “Are

computer viruses alive?” [135]) require informal approaches, and more specific questions

(such as “What is the computational nature of computer viruses?” [32, 4, 15]) can be

answered using formal approaches.

In this thesis we hope to demonstrate the usefulness of formal approaches to (i)

problems that at first seem complex and nebulous, such as “What is reproduction?”;

and (ii) problems that at first appear to require little theoretical analysis, such as

“How can we search for all instances of a reproducing program, and delete them from

the computer?”

1.4 Overview of the Thesis

A classic structure for a Ph.D. thesis is as follows: an introduction, setting the scene and

providing background information; a review of the literature related to the novel con-

tribution of the thesis; the novel contribution itself; and finally, a conclusion, reviewing

the novel contribution relative to the related work in the literature.

Whilst the main theme of this thesis is the construction of formal models of re-

production, the related work in the literature spans three distinct areas: detection of

metamorphic computer viruses, models and classifications of reproduction, and clas-

sifications of computer viruses. Therefore the structure of the work presented in this

thesis necessitates a departure from the classic Ph.D. thesis form. Here, we devote one

chapter to each of the three main areas in which novel contributions have been made,

with the relevant literature review and comparison located at the end of each chapter.

We hope that the reader will permit this alternative structure, as it has been designed

with the reader’s needs in mind. A more classical structure would have been possible,

of course, but perhaps would have been less logical, and therefore more difficult to read.

In Chapter 2 we apply a formal software verification technique called algebraic

specification to the problem of detecting a particular kind of computer virus that is able

to change the syntax of its own code from generation to generation, called a metamor-

phic computer virus. We give an overview of the different kinds of code metamorphism,

and describe the specification of a subset of the Intel 64 assembly programming lan-

guage, which is used in the majority of personal computers worldwide, and a common

11

Chapter 1: Introduction

implementation language for computer viruses. We show that this formal specification

can be used directly for dynamic analysis of computer virus code, and that it can be used

to prove the equivalence or non-equivalence of programs. Under certain circumstances,

which we call semi-equivalence, only a subset of the variables in a particular state are

equal after execution of two programs. We prove that we can extend semi-equivalence

to equivalence under certain circumstances, which enables detection of metamorphic

computer viruses through static analysis. We give fully worked examples of detection

using both dynamic and static analysis based on real-life metamorphic computer virus

code, and we end the chapter with a critical appraisal of our approach relative to other

approaches to metamorphic computer virus detection given in the literature.

In Chapter 3 we begin by describing a method of classification of reproduction

based on Gibson’s theory of affordances. We demonstrate an informal approach, based

on the division of “responsibility” for the self-description and reproductive mechanism

within the act of reproduction. We show that this informal classification is deficient

in a number of regards, and raises several interesting questions. We then attempt to

clarify our classification and ontology by defining formal reproduction models in which

a formal notion of affordances is used to attribute responsibility to various actors within

the reproduction system. We give formal definitions of assistance and triviality with

respect to our formal affordance-based reproduction models, and prove that every as-

sisted reproduction model has a related model in which the same reproductive act is

described, but is classified as unassisted. This theorem is complemented by another the-

orem which says that any unassisted model has a related model, which again describes

the same act of reproduction, but is classified as assisted. At every stage we illustrate

our approach with worked examples from the fields of biology, computer virology, and

artificial life, in order to demonstrate the applicability of, and relevance to, real exam-

ples of reproduction. We conclude the chapter with an overview of other formal and

informal reproduction models and classifications from the literature, and compare our

work with the related work based on a number of different criteria. Finally, we discuss

some of the philosophical implications of our formal models and classification.

In Chapter 4 we describe a practical application of the formal affordance-based

reproduction models from Chapter 3. We define affordance-based computer virus re-

production models as those models in which the computer virus is the reproducer. We

demonstrate how these models can be constructed at different levels of abstraction:

low-level models specify each action as the execution of an instruction or a statement,

and are suitable for short, simple computer viruses; high-level models specify abstract

actions corresponding to specific behaviours, e.g., opening a file for reading and writing.

We give examples of low- and high-level models applied to real-life computer viruses

12

1.4 Overview of the Thesis

programmed as Unix shell scripts, Visual Basic scripts, Java executables and x86 as-

sembly language executables, illustrating the flexibility of the approach. In each case

we classify the models as assisted and unassisted, and describe how the difference be-

tween the two is analogous to classification as detectable or undetectable by anti-virus

behaviour monitors. Therefore, the ability of affordance-based reproduction models

to allow multiple classifications of the same reproducer (explored in Chapters 3 and

4) can mirror the multiple classifications of the same computer virus as detectable or

undetectable, depending on the behaviour monitor’s ability. Behaviour monitors mon-

itor interactions between a computer virus and its environment, e.g., when a computer

opens a file, it must request a handle to that file from the operating system. We pro-

pose that if an anti-virus behaviour monitor is able to detect a given behaviour of a

computer virus, it is actually detecting communication between a computer virus and

some element in its environment, e.g., the operating system. It is therefore logical

to specify this element as a separate entity in the reproduction model describing this

computer virus. In the case where the behaviour monitor cannot detect a behaviour,

then the monitor cannot “distinguish” between the computer virus and the resource

with which it interacts. With this in mind, we describe how automatic classification

can be achieved, either by static or dynamic analysis, and give worked examples of

the two different methods for Visual Basic script computer viruses. We describe how

metrics for classification can be developed to sub-classify assisted computer viruses,

discuss algorithmic implementation issues, and describe how this approach might be

used to improve the efficiency of anti-virus software. Finally, we given an overview of

other computer virus classifications in the literature, and compare our approach with

the others on a number of different criteria.

Much of the novel research in this thesis has been peer reviewed and published

previously [154, 153, 158, 159, 160, 156], at various stages of development. This thesis

contains the most up-to-date account of the research conducted during the author’s

Ph.D.7, as well as significant sections that do not appear elsewhere, including this

chapter, Chapter 5 and the literature reviews and comparisons at the ends of Chapters

2–4. Chapter 2 includes research published in [154, 153, 158], Chapter 3 covers [159,

160], and Chapter 4 is based on [159, 160, 156].

1.4.1 Computer Viruses and Artificial Life

As we have described, this thesis is concerned broadly with formal models of repro-

duction. We start with formal models of computer viruses in Chapter 2, which we

7In between the initial and final submissions of this thesis, the work presented has been extended
further [161, 157, 155].

13

Chapter 1: Introduction

extend to formal models of reproduction in general in Chapter 3, before returning to

formal models of computer viruses in Chapter 4. However, this is not the first time

that computer viruses and artificial life have been linked.

In his book, “Computer Viruses, Artificial Life and Evolution” [97], Ludwig de-

scribes in detail the relationship between computer viruses, artificial life and the study

of evolutionary processes. The scope of the book is wide, and covers several funda-

mental philosophical issues: reproduction, emergence, evolution, the philosophy of life

and evolution. There is much overlap, therefore, in the subject material of Ludwig’s

book and this thesis. While philosophical issues are highly relevant to this work and

appear several times (particularly in Chapter 3), this thesis aims primarily to describe

a number of novel contributions to the fields of computer virology and artificial life.

For more information on the philosophical issues at the heart of this thesis (as well

as the fields of computer virology and artificial life), the reader is encouraged to read

Ludwig’s work for an excellent overview8.

Computer viruses are also given as a form of artificial life by Spafford; this work is

described in detail in Section 4.4.1.4.

1.4.2 A Note on the Inclusion of Computer Virus Code

For the demonstration of various computer virus detection methods, it has been neces-

sary to include in this thesis excerpts from the source code of some reproducing malware

for illustrative purposes, in the vein of Cohen [33] and Filiol [43], who have published

virus source code for similar reasons. In order to prevent dissemination of exploitable

code we have omitted significant sections of code, and in the remaining code we have

introduced subtle errors. Therefore, the source code in this paper cannot be executed,

but can be used by the reader to verify the methods for computer virus detection,

modelling and classification that we describe.

The computer virus code used in this thesis was obtained from a number of sources,

including “VX Heavens” [1] and “The Quine Page” [143]. We would like to thank

Bruce Ediger for his permission to include a variant of his quine program. The variant

is shown in Figure 4.1, and the original appeared in [143].

8Ludwig has also published two excellent introductory texts on computer viruses [95, 96].

14

Chapter 2: Formal Detection of Metamorphic

Computer Viruses

2.1 Introduction

As we saw in the previous chapter, computer viruses are (often harmful) computer

programs that replicate autonomously through computer file systems. They are typ-

ically designed to replicate without the user’s consent, and are able to damage data

or software on infected machines. In general, computer viruses replicate using the le-

gitimate infrastructure of an operating system (e.g., disk input/output routines), and

consequently the spread of computer viruses is difficult to prevent absolutely without

restricting the operating system (OS) in some way.

Academic study of computer viruses began in 1987, when Cohen defined an abstract

computer virus and gave a proof of the undecidability of computer virus detection, prov-

ing that there would be no detection-based panacea for the computer virus problem [31].

Preventing computer viruses through the use of severely restricted operating systems is

possible, since the computer virus can only work by modifying stored programs in mem-

ory so that they contain a copy of the virus. However, the computer architecture that

allows program creation and modification is at the core of the flexibility and efficiency

of modern computers; for example, no compiler could run without the creation and

modification of stored programs. Thus, finding a cure for computer viruses by restrict-

ing their environments is impractical, and reliable detection is impossible. Therefore

the fight to stop illicit computer viruses becomes a question of optimization, i.e., “How

can we best protect ourselves against computer viruses?” In addition, tractability is a

primary concern due to the trade-off between efficiency and thoroughness of anti-virus

(AV) scanners. With this and the sustained proliferation of computer viruses in mind,

general theories of computer viruses and their environments would be useful. Formal

specification of the behaviour of different virus types can provide insight to develop-

ers of anti-virus software by highlighting the commonality between different computer

viruses, e.g., by encouraging the reuse of detection and disinfection methods. Knowl-

15

Chapter 2: Formal Detection of Metamorphic Computer Viruses

edge of which specific details of the implementation of computer systems afford survival

for viruses can be derived from formal models, and can be used to restrict computer

virus behaviour through the development of systems that are inherently (and provably)

more secure.

2.1.1 Algebraic Specification

The formalisations of computer viruses presented in this chapter are based on algebraic

specification. Universal algebra is the branch of mathematics that deals the abstract

definition of algebras. An algebra consists of a carrier set S together with a finite set Υ

of operations on that set [58]. Many common mathematical structures such as Peano

arithmetic, groups, rings, etc., are examples of algebras. Algebras are very similar to

the concept of abstract data types in computer science, since an abstract data type

consists of a set of data (cf. the carrier set S) together with a set of functions (cf. the

set of operations Υ) which manipulate that data.

Therefore, algebraic specification can be used to give a semantics for abstract data

types. Based on this, we can use algebraic specification to give semantics for a pro-

gramming language if we specify an abstract data type in which there is a sort of data

corresponding to the set of stores, in which the values of variables are stored, and a

store evaluation operation which takes a store s and a variable name v and returns the

value of v in the store s. This is one method of algebraic specification of programming

languages that is enabled by Maude, a formal high-level language based on rewriting

logic and algebraic specification [29].

Therefore, algebraic specification provides a way of defining the formal semantics of

algorithms and programming languages, and in this chapter we use it to give a formal

definition of computer viruses, as well as to explore means of detecting metamorphic

computer viruses (MCVs), which change their syntax (whilst keeping their behaviour

constant) in order to evade anti-virus signature-based detection.

2.1.2 Chapter Overview

In Section 2.2 we introduce the problem of metamorphic computer virus detection, a

difficult theoretical problem1in computer virology for which there is yet no standard

solution [140, 139]. Then, in Sections 2.4–2.8 we describe an approach towards the

detection of metamorphic computer virus using an algebraic specification of a subset

of the IntelR©64 and IA-32 Architectures assembly programming language instruction

1Indeed, detection of metamorphic computer viruses is undecidable in general, as proven by Chess
& White [26].

16

2.2 Metamorphic Computer Viruses

set2. In Section 2.4 an overview of the specification is given, and in Section 2.5 we

introduce formal notions of equivalence and semi-equivalence of instructions and in-

struction sequences. The Maude specification, when combined with the Maude term

rewriting engine, can be used as an interpreter for programs in Intel 64, and this in

turn can be used for dynamic analysis of computer viruses. In Section 2.6 this dynamic

analysis is used to prove the equivalence and semi-equivalence of real-life metamorphic

computer virus code fragments. In Section 2.7 we prove that semi-equivalence can be

extended to equivalence under certain conditions (“equivalence-in-context”), and show

how these results can be applied to static analysis of metamorphic computer viruses.

Then, in Section 2.8 we describe how the specification of Intel 64 can be applied to the

detection of metamorphic computer virus detection through static and dynamic anal-

ysis. Finally, in Section 2.9 we give a summary and critical appraisal of our approach

through a comparison with related work on the problem of metamorphic computer

virus detection.

2.2 Metamorphic Computer Viruses

The undecidability of computer virus detection is one of the oldest results in the field

of computer virology, but anti-virus software has traditionally compensated for this

by exploiting a weakness common to many computer viruses: constant syntax. The

string of binary digits corresponding to a particular computer virus usually remains

unchanged from one generation to the next, as does the placement of the computer

virus within the infected executable file, e.g., one particular virus might be placed at

the start of any executable it infects. Anti-virus software would search executable files

for virus “signatures” – strings of bits that correspond to a particular virus – at the

usual sites of infection within executables files. The presence of a signature would signal

that the executable was infected, and that further steps needed to be taken to disinfect

the file.

In order to avoid detection, the writers of computer viruses began to develop ways

of obfuscating the suspect virus code. One attempt at this, the polymorphic computer

virus, which changes its syntactic (binary digit) representation using encryption, fails

to remain hidden from signature scanners once its means of decryption has been dis-

covered. Once decrypted, all generations of polymorphic computer viruses look alike,

and the signature-based approach to detection can be used. A more powerful means of

2IntelR©64 consists of an extension of IA-32 to facilitate 64-bit memory addressing [75]. There are a
few extra instructions in IntelR©64 that are given to enable use of the new memory structure, but these
instructions are not used in this chapter. However, the instructions used here are common to both
architectures, and so for the sake of consistency, the IntelR©64/IA-32 architectures will be henceforth
referred to as “Intel 64”.

17

Chapter 2: Formal Detection of Metamorphic Computer Viruses

detection avoidance is employed by the metamorphic computer virus. Each successive

generation of a metamorphic computer virus modifies the syntax, but leaves the seman-

tics unchanged. (Any two generations of the same metamorphic computer virus that

differ syntactically are called allomorphs.) In this way the behaviour of each successive

generation is the same, but the virus appears to be different. Thus, it becomes much

more difficult for anti-virus software to detect a metamorphic computer virus using a

signature-based approach, and it is not possible to keep a record of all possible genera-

tions because there may be an infinite number. In this way the metamorphic computer

virus can successfully avoid detection [140].

Metamorphic computer viruses are particularly difficult to detect; there are known

cases where detection is computationally intractable [136, 17, 18, 169, 72], or even

undecidable [26, 40, 47]. Not all metamorphic computer viruses are so difficult to detect,

however, and therefore research into practical ways to detect metamorphic computer

viruses is essential.

2.2.1 Types of Code Metamorphosis

Metamorphic computer viruses conceal their code from anti-virus software using a vari-

ety of semantics-preserving, syntax-mutating methods [88, 140]. A non-exhaustive list

of the different kinds of code metamorphosis is given in order to demonstrate the many

and varied ways in which metamorphic computer viruses can use syntactic camouflage

to defend themselves against static analysis based detection. Several of these types are

also described by Lakhotia & Mohammed [88]. Where appropriate, we give examples

of the metamorphoses using the Intel 64 assembly language.

2.2.1.1 Junk Code Insertion

Junk code is code that is superfluous to the main function(s) of the virus, and is inserted

to create syntactic variants. There are different types of junk code, including but not

limited to:

• Code that reverses the effects of a previous instruction or instructions, thus mak-

ing the previous instruction(s) and the inverse code into junk. For example, the

instruction sequence xchg eax,ebx ; xchg eax,ebx — which swaps the values

in registers eax and ebx twice — would fall under this category. (Note that,

throughout this chapter, we use a semicolon (;) to indicate sequential composi-

tion of assembly language instructions.)

• Code that performs a computation that is not utilised in any of the outputs of

the program. For example, the first instruction in the following instruction list

18

2.2 Metamorphic Computer Viruses

does nothing as the result is overwritten by the next instruction: mov eax,0 ;

mov eax,ebx.

2.2.1.2 Variable Renaming

Variables are renamed in successive generations of metamorphic computer viruses such

as Win9x.Regswap [140]. For instance, mov eax,0 ; push eax ; pop ebx could be

replaced by the equivalent instruction sequence mov ecx,0 ; push ecx ; pop ebx.

2.2.1.3 Unconditional Jump Insertion

A block of instructions is broken up into more than one smaller blocks of instructions

linked by unconditional jumps. For example:

pop edx pop edx

mov edi,0004h jmp label1

mov esi,ebp label2:

mov eax,000Ch jmp label3

label1:

mov edi,0004h

mov esi,ebp

jmp label2

label3:

mov eax,000Ch

2.2.1.4 Instruction Reordering

Blocks of data-independent instructions are reordered to create syntactic variants.

For example, mov eax,ebx ; mov esi,edi can be reordered to mov esi,edi ; mov

eax,ebx.

2.2.1.5 Pseudo-Conditional Jump Insertion

A sequence of instructions ends in a conditional jump that depends entirely on informa-

tion encoded in the preceding instructions. An example of this would be the following

instruction sequence, mov eax,20 ; sub eax,20 ; je label1, in which the condi-

tional jump je (“jump if the zero flag is set to 1”) is effectively unconditional because

the preceding instructions always set the zero flag to 1.

19

Chapter 2: Formal Detection of Metamorphic Computer Viruses

2.2.1.6 Arithmetical/Boolean Mutation

Arithmetical and Boolean operations can be easily mutated into other, equivalent forms.

A good example of this can be found in the Win9x.Zmorph.A virus (see Figure 2.2,

Section 2.6.2).

2.2.1.7 Payload Mutation

Some viruses only reproduce on certain days of the week, or when the hour of the day is

an even number, for example. These conditionalities can be mutated by a metamorphic

computer virus. The payload of the virus could also be mutated.

2.2.1.8 Pseudo Branching

Here, the same code is executed whether the condition of a conditional jump is true or

not3. For example, the following two code fragments are equivalent with respect to the

eax register:

je label1 mov eax, 435098

mov eax, 435098 sub eax, 340934

sub eax, 340934 ...

jmp label2

label1:

mov eax, 435098

sub eax, 340934

label2:

...

2.3 Algebraic Specification in Maude

Maude is a formal high-level language based on rewriting logic and algebraic specifica-

tion [29]. Maude is strongly related to its predecessor, OBJ [60], a formal notation and

theorem prover based on equational logic and algebraic specification. Like OBJ, Maude

can be used for algebraic specification [105], as the operators of an algebra can be spec-

ified in terms of the sorts of their operands and values, and given meaning (i.e., turned

into operations) using equations. These collections of sort and operation specifications

3This form of metamorphism has not been seen in any metamorphic computer virus, to the author’s
knowledge. It is included as a likely future development of metamorphic computer viruses. This is
justified with the following quote from Filiol et al [45] on the ethics of the computer virology community:
“We cannot rely on a ‘wait and see’ approach, but we must anticipate technological evolutions.”

20

2.3 Algebraic Specification in Maude

are called modules. Within these modules we can define the syntax and semantics of

operations, which represent the behaviour of the system we wish to describe.

For example, the syntax of the natural numbers in Peano notation could be laid

out in Maude as follows:

fmod PEANO is

sort Nat .

op 0 : -> Nat .

op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat .

endfm

The first line simply introduces the name (PEANO) of the specification. The keyword

fmod denotes that this is a functional module, i.e., it uses equations to give semantics

to its operators. This specification uses only one sort of data: natural numbers, whose

name (Nat) is declared in the second line. The next three lines declare three operators.

The first, 0 is a nullary operator (i.e., a constant) and can be used by other non-nullary

operators (which have an operand of sort Nat) to generate more complex terms. s_

is a unary operator that takes a Nat and returns a Nat, and _+_ is an infix binary

operator that takes two Nats and returns a Nat. s_ is the successor function, and _+_

is addition.

In Maude the semantics of operators can be given using equations, which are used

by the Maude interpreter as term rewriting rules. An equation in Maude has the form

eq t1 = t2 .

where t1 and t2 are terms of the same sort. So, if we wanted to give the semantics for

the _+_ operator above, we could do this as follows:

fmod PEANO-SEMANTICS is

using PEANO . *** Import the PEANO module

vars M N : Nat .

eq M + 0 = M .

eq M + s(N) = s(M + N) .

endfm

The first equation states that any term of the form M + 0 is equal to a term of the

form M, i.e., we have stated Peano’s axiom of natural numbers, that x + 0 = x. The

second equation states that terms of the form M + s(N) are equal to terms of the form

s(M + N), which is another of Peano’s axioms for natural numbers.

21

Chapter 2: Formal Detection of Metamorphic Computer Viruses

Now we have specified the semantics of addition, or rather, we have made the _+_

operator behave as an operation which returns the value of the sum of two natural

number operands in Peano notation. The = is effectively a rewriting operator, showing

that the term on the left is rewritten to the term on the right. Using the Maude

interpreter, we can perform a reduction (a sequence of rewrites) in order to reduce

a term to the most reduced form possible, i.e., the Maude interpreter keeps applying

rewrite rules as long as there is a rewrite rule that will apply. A typical reduction using

the specification above would be as follows,

Maude> reduce s(s(s(0))) + s(s(0)) .

==>

s(s(s(s(0))) + s(0))

==>

s(s(s(s(s(0))) + 0))

==>

s(s(s(s(s(0)))))

where ==> denotes the application of a rewrite rule from the specification.

An important notion in Maude is that of reduction as proof. Since each of the

equations above holds for the natural numbers, the above reduction is a proof that

“s(s(s(0))) + s(s(0)) = s(s(s(s(s(0)))))”, or “3 + 2 = 5” in Arabic numerals.

2.4 Specifying Intel 64 Assembly Language

Algebraic specification of imperative programs is one of the many uses of Maude [105].

In a similar way to the example of Peano’s natural numbers above, in which the se-

mantics of the _+_ operator was defined in Maude using equations, the semantics of

programming language statements and functions can be defined using equations in

Maude. Goguen & Malcolm describe an approach based on store semantics, similar to

denotational semantics, in which the semantics of a programming language statement

can be determined by the effects on variables relative to a store (i.e., state) [58]. In this

section we present an algebraic specification of a subset of the Intel 64 assembly lan-

guage instruction set based on store semantics. (The complete algebraic specification

can be seen in Appendix A.)

The algebraic specification in Maude can be used to calculate the effects on any

variable of any instruction sequence. Thus it is possible to prove equivalence of Intel

64 assembly language instruction sequences by applying reductions — sequences of

equational rewrites — using the Maude term rewriting engine.

22

2.4 Specifying Intel 64 Assembly Language

The Intel 64 architecture is used by the vast majority of personal computers world-

wide, and it follows that many computer viruses will (at some point in their reproductive

cycle) be manifest as a sequence of Intel 64 instructions. This section describes how a

subset of Intel 64 has been formally specified algebraically using Maude.

2.4.1 Specifying the Syntax of Intel 64

We specify the syntax of Intel 64 assembly language instructions in Maude by declar-

ing operations for each assembly language instruction. Since each instruction may

work with program variables4 (e.g., eax) or integers (e.g., 430549402), we begin our

specification by stating that these three sorts of data are used:

sorts Instruction Variable Int .

Intel 64 assembly language instructions can have either zero, one or two operands. If

there are two operands, we call the first one the destination operand, and the second

the source operand. The reason is that the source operand specifies an input program

variable or integer for the instruction, and the destination operand specifies an output

variable. Since the source operand can be either a variable or an integer, we can make

the specification of Intel 64 simpler by declaring program variables and integers to be

types of expression. We do this using by declaring a subsort:

subsort Variable Int < Expression .

We can now define the syntax of Intel 64 instructions in Maude. For example,

op mov_,_ : Variable Expression -> Instruction .

says that mov v, e is an instruction for any program variable v and expression e. We

can define program variables eax and ebx, representing the Intel architecture registers

of the same name, as follows:

ops eax ebx : -> Variable .

The sort Variable is a subsort of Expression, meaning that every program variable is

an expression. Therefore, we have defined given a formal syntax for a part of the Intel

64 assembly language, in which assembly language statements are valid terms of sort

Instruction, e.g.:

4“Variable” has a double-meaning in this context, as it refers to the “mathematical” variables used
in Maude equations, as well as the variables used in programs. Therefore, to avoid any confusion we
will refer to the latter as “program variables”.

23

Chapter 2: Formal Detection of Metamorphic Computer Viruses

mov eax,ebx

mov ebx,eax

mov eax,eax

Likewise, we can define the syntax of other assembly language instructions, e.g.:

op add_,_ : Variable Expression -> Instruction .

op push_ : Expression -> Instruction .

op nop : -> Instruction .

Therefore, the following are all recognisable with our Maude specification of the syntax

of Intel 64:

add ecx,edx

push eax

nop

Since we have declared the sort of integers (a built-in sort in Maude) as a subsort

of expression, instructions with literal numeric values are also recognisable with our

Maude syntax, e.g.:

mov eax, 0

add ecx, 43409924

push 3143

The syntax of a subset of Intel 64 is stored in a module called I-64-SYNTAX, and can

be seen in Appendix A.

2.4.2 Specifying the Semantics of Intel 64

In Intel 64, as in any other imperative programming language, computation is achieved

by updating the state of the machine that interprets the instructions of the language.

We use the sort Store to represent this state, which comprises the values stored in the

registers, stack, and various flags of the Intel 64 architecture. Notionally, we can think

of a store as a function mapping variable names to values:

op _[[_]] : Store Expression -> Int .

The double-bracket operator takes a store and an expression (e.g., a number or a literal

numeric value) and returns the integer value of that expression within that store.

Instructions (when executed) can modify the store, which we express in Maude by

specifying the _;_ operator:

24

2.4 Specifying Intel 64 Assembly Language

op _;_ : Store Instruction -> Store .

Therefore we can take some generalised store, s, and evaluate the effects of an in-

struction. This mirrors classical denotational semantics, where an instruction sequence

denotes a function that takes a starting state as an argument, and returns the updated

state that results from running the instruction sequence in the starting state. Using

these two operators, we can define equations in Maude which express the semantics of

Intel 64 instructions, e.g.,

eq S ; mov V,E [[V]] = S[[E]] . (2.1)

can be read as, “the value of any program variable V after executing mov V,E in any

store S is equal to the value of expression E in the original store S.” We also need to

specify that the values of all other variables are unchanged. We can do this using a

conditional equation in Maude:

ceq S ; mov V1,E [[V2]] = S[[V2]] if V1 =/= V2 . (2.2)

Therefore, we have specified that the value of any variable V2 is unchanged after exe-

cuting mov V1,E in any store S, as long as V1 6= V2.

As we described earlier, Maude interprets equations as rewrite rules, in which the

term on the left-hand side is rewritten to the term on the right-hand side. Therefore,

by applying a sequence of rewrites to certain terms, we can evaluate the effects of

instructions on a generalised store. We can extend this technique to sequences of

instructions by overloading the _;_ operator, so that it can be used to denote sequential

composition of instructions. To do this, we declare a sort of InstructionSequences,

of which ordinary Instructions are a subsort, before defining the second possible use

of the _;_ operator:

sort InstructionSequence .

subsort Instruction < InstructionSequence .

op _;_ : InstructionSequence InstructionSequence

-> InstructionSequence .

For example, we may wish to know the effect of the following instruction sequence on

a store:

mov ecx, eax ; mov eax, ebx ; mov ebx, ecx

The mov instruction assigns the value of its right-hand (source) operand to the variable

in its left-hand (destination) operand. Based on this informal definition of the semantics

25

Chapter 2: Formal Detection of Metamorphic Computer Viruses

of mov, we can see that the instruction sequence above swaps the values of program

variables eax and ebx. We can prove this using our formal semantics in Maude by

performing reductions:

Maude> reduce s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[eax]] .

==>

s ; mov ecx, eax ; mov eax, ebx [[eax]]

==>

s ; mov ecx, eax [[ebx]]

==>

s[[ebx]]

We ask Maude to reduce the term in the first line. The Maude term rewriting engine

then applies (2.2), followed by (2.1) and finally (2.2) again to get the result: s[[ebx]].

Therefore, we know that the value of eax in any store S after executing the instruction

sequence is equal to the original value of ebx in store S, i.e., eax now has the value of

ebx. Similarly, we can prove that ebx gets the value of eax:

Maude> reduce s ; mov ecx, eax ; mov eax, ebx ; mov ebx, ecx [[ebx]] .

==>

s ; mov ecx, eax ; mov eax, ebx [[ecx]]

==>

s ; mov ecx, eax [[ecx]]

==>

s[[eax]]

We have therefore proven formally that the instruction sequence above swaps the values

of eax and ebx. As we shall see in the coming sections, we can apply this technique to

determine whether any two programs are equivalent.

2.4.2.1 Intel 64 Stack Semantics

The stack is a special type of program variable within the Intel 64 architecture, since

it is essentially a sequence of integer values. We define an operator, next, which lets

us build up lists of integers:

op _next_ : Int Stack -> Stack .

We also define a constant, stackBase, which denotes the base (i.e., bottom) of the

stack:

op stackBase : -> Stack .

26

2.4 Specifying Intel 64 Assembly Language

Therefore, all of the following are recognisable stack states within our specification:

stackBase

3 next stackBase

10 next 3 next stackBase

Stacks are lists of variables, and therefore we have to define the update semantics for

the stack program variable differently from other program variables. We define a special

form of the double-bracket operator:

op _[[stack]] : Store -> Stack .

We can then define the semantics of instructions which affect the state of the stack.

The instruction push e pushes the value of expression e onto the stack. We specify

this as follows:

eq S ; push E [[stack]] = S[[E]] next S[[stack]] .

We can also specify that other instructions, such as mov V,E, do not affect the state of

the stack:

eq S ; mov V,E [[stack]] = S[[stack]] .

In other words, the value of the stack program variable after executing any mov is

unchanged.

2.4.3 Using the Maude Specification as an Interpreter

Using the above techniques we can calculate the effects of any sequence of instructions

on any program variable. The full specification, which can be seen in Appendix A,

contains definitions of the syntax and semantics of the MOV, ADD, SUB, XOR, TEST, AND,

OR, PUSH, POP and NOP instructions. In principle, there is no reason to stop here; it

would be quite feasible to specify the semantics of Intel 64 in its entirety using Maude.

Indeed, equational logic formalisms such as Maude have been shown to be a useful tool

for the specification of imperative languages [105, 60, 58].

When the syntax and semantics of a programming language are defined in a formal

executable language such as Maude, an interpreter and program analysis tool for that

programming language are obtained essentially for free [105, 104]. In the example

above, we proved that the effect of an instruction sequence was to swap the values of

two variables by performing reductions in Maude. In fact, reductions turn the static

Maude specification of a programming language into an executable specification, which

can then be used as an interpreter, i.e., we can calculate the effects of arbitrary programs

by evaluating them relative to variables in the store.

27

Chapter 2: Formal Detection of Metamorphic Computer Viruses

2.5 Equivalence of Instruction Sequences

Metamorphic computer viruses change their syntax without changing their behaviour

when they reproduce, so we are particularly interested in applying our semantics for

Intel 64 to show that two segments of code have the same behaviour.

We begin by defining notions of equivalent and semi-equivalent behaviour for code

segments. Let S, V , and I denote the sets of all stores, variables, and instructions,

respectively; the variables V include the registers, stack and flags of Intel 64. Let

[[]] : S × V → Z and _; _ : S × I → S, so that s; p denotes the state of an updated

store after executing instruction sequence p in store s, and s; p[[v]] denotes the value of

the variable v in updated store s; p, as described in the Maude specification outlined

above.

Two stores are equivalent if and only if every variable has the same value, and

semi-equivalent if and only if a subset of variables have the same values.

Definition 1. For W ⊆ V , stores s1 and s2 are semi-equivalent with respect to W ,

written s1 ≡W s2, iff for all variables v ∈W ,

s1[[v]] = s2[[v]] .

In the case that W = V , we say that s1 is equivalent to s2, and write s1 ≡ s2.

Furthermore, we say that two sequences of instructions are equivalent if and only if

they behave equivalently with respect to the set of variables in the store, and that they

are semi-equivalent if and only if they behave equivalently with respect to a subset of

the set of variables in the store.

Definition 2. For W ⊆ V , instruction sequences p1 and p2 are semi-equivalent with

respect to W , written p1 ≡W p2, iff for all stores s, and all variables v ∈W :

s; p1[[v]] = s; p2[[v]] .

In the case that W = V , we say that p1 is equivalent to p2, and write p1 ≡ p2.

Note that these notions of equivalence are in fact equivalence relations.

Our end goal is to be able to prove that two allomorphic sequences of code are

equivalent. If p1 ≡W p2 then these instruction sequences may have different effects on

variables that are not in W . However, if these instruction sequences are composed with

another instruction sequence ψ whose behaviour does not depend on such variables,

then we may have:

p1;ψ ≡ p2;ψ .

28

2.5 Equivalence of Instruction Sequences

If these conditions are met by some p1, p2 and ψ then we say that p1 and p2 are

equivalent in context of ψ.

For the purposes of static analysis, we identify the variables that are read or written

to by instructions. We identify Vout(θ) as the set of variables that could be modified

by some instruction θ.

Definition 3. For an instruction θ, define Vout(θ) by v ∈ Vout(θ) iff there is an s ∈ S

such that s; θ[[v]] 6= s[[v]].

Example 1. We can determine the value of Vout for an instruction using the Maude

specification of Intel 64. Suppose we wish to know the value of Vout(mov v1,v2). By the

above definition, we must show that for every program variable v ∈ Vout(mov v1,v2)

that v is different after executing mov v1,v2 in some store s. For example, after in-

specting the Maude specification we may suspect that v1 is in Vout(mov v1,v2). We can

prove this by assuming that the values of program variables v1 and v2 in some store s

are different. We can express this in Maude notation as

eq s[[v1]] = value1 .

eq s[[v2]] = value2 .

where value1 and value2 are the (numeric) values of v1 and v2 respectively. Then,

by performing reductions in Maude we can calculate the value of v1 before and after

executing mov v1,v2:

reduce s[[v1]] .

result Int: value1

reduce s ; mov v1, v2[[v1]] .

result Int: value2

These reductions tell us that the value of v1 has changed from value1 to value2 by

executing mov v1,v2. Therefore, we know that v1 ∈ Vout(mov v1,v2).

The same process can be applied to show that the instruction pointer program

variable ip ∈ Vout(mov v1,v2) and that v′ /∈ Vout(mov v1,v2) for all v′ not equal to v1

or ip, i.e., Vout(mov v1,v2) = {v1, ip}. The complete Maude proof scripts can be seen

in Appendix A.

Now that we have defined Vout(θ) as the set of variables that can be affected by the

execution of instruction θ, we want Vin(θ) to be the set of variables that could affect

the behaviour of some instruction θ in some way.

Definition 4. For an instruction θ, define Vin(θ) by v /∈ Vin(θ) iff for all s, s′ ∈ S,

s ≡V−{v} s
′ implies s; θ ≡Vout (θ) s

′; θ.

29

Chapter 2: Formal Detection of Metamorphic Computer Viruses

Example 2. We can determine Vin(θ) for an instruction θ based on the Maude speci-

fication of Intel 64. By the definition of Vin, we know that if there exist stores s, s′ ∈ S

such that s ≡V−{v} s
′ and s; θ 6≡Vout(θ) s

′; θ then v ∈ Vout(θ). Inspection of the Maude

specification might result in the suspicion that v2 ∈ Vin(mov v1, v2). We can prove

this by assuming that s ≡V−{v2} s
′, which we can specify in Maude as follows:

eq s[[v2]] = value1 .

eq s’[[v2]] = value2 .

ceq s[[V]] = s’[[V]]

if V =/= v2 .

The first two equations say that v2 is different in stores s and s’, and the last equation

says that every variable apart from v2 has the same value in stores s and s’. Now,

we can test using reductions in Maude whether the variables in Vout(mov v1, v2) are

equal after executing mov v1, v2. Since Vout(mov v1, v2) = {v1, ip}, we can test

these values using reductions:

reduce s ; mov v1, v2 [[v1]] .

result Int: value1

reduce s’ ; mov v1, v2 [[v1]] .

result Int: value2

reduce s ; mov v1, v2 [[ip]] .

result 1 + s’[[ip]]

reduce s’ ; mov v1, v2 [[ip]] .

result 1 + s’[[ip]]

We can see that the value of ip after executing mov v1, v2 is the same in both stores,

but the value of v1 is different. Therefore, we know that v2 ∈ Vin(mov v1, v2).

We can perform similar reductions to show that ip ∈ Vin(mov v1,v2) and that

v′ /∈ Vin(mov v1,v2) for all v′ not equal to v2 or ip, i.e., Vin(mov v1,v2) = {v2, ip}.

The complete Maude proof scripts can be seen in Appendix A.

Additionally, these functions extend naturally to sequences of instructions:

Definition 5. For instruction sequences ψ1 and ψ2:

Vin(ψ1;ψ2) = Vin(ψ1) ∪ Vin(ψ2), and

Vout(ψ1;ψ2) = Vout(ψ1) ∪ Vout(ψ2) .

30

2.6 Dynamic Analysis

In the following section the Maude specification of Intel 64 is used for dynamic anal-

ysis in order to prove equivalence/semi-equivalence of metamorphic computer virus

code fragments, and in Section 2.7 we will explore an approach to static analysis of

metamorphic computer viruses based on these definitions.

2.6 Dynamic Analysis

Using the formal specification of Intel 64 described in Section 2.4.2 it is possible to prove

the equivalence or semi-equivalence of various allomorphs of metamorphic computer

viruses using reductions in Maude, by using the Maude specification as an interpreter

for dynamic analysis. The technique is used on allomorphic code fragments of two

metamorphic computer viruses: Win95/Bistro and Win9x.Zmorph.A. The application

of this technique to the detection of computer viruses is discussed in Section 2.8.

Before we begin, it is necessary to establish that if there is some sequence of in-

structions ψ for which v /∈ Vout(ψ), then the value of v is unchanged after executing ψ.

We formalise this in

Proposition 1. Let ψ = θ1, . . . , θn be some sequence of instructions. Then for all

stores s ∈ S, s;ψ[[v]] = s[[v]] if v /∈ Vout(ψ).

Proof. Proof is by induction. By Definition 5, we know that v /∈ Vout(θi) for 0 ≤ i ≤ n.

By Definition 3, s; θ1[[v]] = s[[v]] for all stores s. Let ψm be the subsequence of ψ

consisting of the first m instructions in ψ, i.e., ψm = θ1; . . . ; θm. Now, assume that

s;ψm[[v]] = s[[v]]. Then by Definition 3, taking s = ψm and θ = θm+1, we know that

s;ψm+1[[v]] = s;ψ′[[v]] = s[[v]]. Therefore s;ψ[[v]] = s[[v]], as desired.

2.6.1 Example 1: Win95/Bistro

Win95/Bistro applies equivalent sequence replacement to generate syntactic variants.

Figure 2.1 shows two allomorphic fragments from Win95/Bistro.

The fragments have been divided up into three blocks each. The first two blocks

consist of instruction sequences which alter the state of the stack, the ebp register

and the instruction pointer (ip). We can analyse the effects on these variables using

a Maude reduction. First we define two instruction sequences a and b, one for each

block:

ops a b : -> InstructionSequence .

Next we define the instruction sequences corresponding to a and b (this is a shorthand

that allows more concise use of the instruction sequences):

31

Chapter 2: Formal Detection of Metamorphic Computer Viruses

push ebp

mov ebp, esp

mov esi, dword ptr [ebp + 08]

test esi, esi

je 401045

mov edi, dword ptr [ebp + 0c]

or edi, edi

je 401045

push ebp

push esp

pop ebp

mov esi, dword ptr [ebp + 08]

or esi, esi

je 401045

mov edi, dword ptr [ebp + 0c]

test edi, edi

je 401045

Figure 2.1: Allomorphic fragments of Win95/Bistro. [140]

eq a = push ebp ; mov ebp,esp .

eq b = push ebp ; push esp ; pop ebp .

Now, using the semantics of Intel 64 as specified in Maude, we can use a reduction to

calculate the effects of any instruction sequence on any variable. We can also use the

is operation to prove that two instruction sequences have the same effect on the

same variable, and are therefore equivalent with respect to that variable.

Proposition 2. Instruction sequences a and b are equivalent with respect to every

variable apart from the instruction pointer, i.e., a ≡W b where W = V − {ip}.

Proof. Since Vout(a) = Vout(b) = {stack, ebp} we need only prove equivalence with

respect to {stack, ebp} and non-equivalence with respect to ip, because Proposition 1

states that all other variables (i.e., those outside Vout(a)) will be unchanged.

Maude> reduce s ; a [[stack]] is s ; b [[stack]] .

result Bool: true

Maude> reduce s ; a [[ebp]] is s ; b [[ebp]] .

result Bool: true

Maude> reduce s ; a [[ip]] is s ; b [[ip]] .

result Bool: false

Therefore, a and b are equivalent with respect to every variable except the instruction

pointer.

Next we can tackle the second pair of allomorphic fragments. This time we define a

constant, dword1, to stand for the value of dword ptr [ebp + 08], which is the same

in both fragments.

32

2.6 Dynamic Analysis

op dword1 : -> EInt .

We define c and d in a similar way to last time:

ops c d : -> InstructionSequence .

eq c = mov esi, dword1 ; test esi, esi .

eq d = mov esi, dword1 ; or esi, esi .

The test instruction performs a Boolean-and operation on its operands, and sets the

value of three flags (zf, sf and pf) in the EFLAGS register according to the result,

and sets the value of two other flags (cf and of) in EFLAGS to zero (no other memory

locations are updated) [74]. or performs a Boolean-or operation on its operands, and

sets the value of three flags (zf, sf and pf) in the EFLAGS register according to the

result, and sets the value of two other flags (cf and of) in EFLAGS to zero (also,

the variable in the source operand is set to the result of the Boolean-or) [74]. Clearly,

a Boolean-and is not equivalent to a Boolean-or, however these two instructions are

equivalent if the source and destination operands in both instructions are the same

variable. The Win95/Bistro virus uses this fact to generate allomorphs. We express

this truth, the idempotent law of Boolean-and and Boolean-or, using two equations:

eq I | I = I .

eq I & I = I .

Proposition 3. c is equivalent to d, i.e., c ≡ d.

Proof. Proof is with a reduction. Since

Vout(c) = Vout(d) = {esi, ip, zf, sf, pf, cf, of}

we need only prove equivalence with respect to these variables because Proposition 1

states that all other variables (i.e., those outside Vout(c)) will be unchanged.

Maude> reduce s ; c [[esi]] is s ; d [[esi]] .

result Bool: true

Maude> reduce s ; c [[ip]] is s ; d [[ip]] .

result Bool: true

Maude> reduce s ; c [[zf]] is s ; d [[zf]] .

result Bool: true

Maude> reduce s ; c [[pf]] is s ; d [[pf]] .

result Bool: true

Maude> reduce s ; c [[sf]] is s ; d [[sf]] .

33

Chapter 2: Formal Detection of Metamorphic Computer Viruses

result Bool: true

Maude> reduce s ; c [[cf]] is s ; d [[cf]] .

result Bool: true

Maude> reduce s ; c [[of]] is s ; d [[of]] .

result Bool: true

Therefore, c is equivalent to d.

The third pair of code fragments can be dealt with in a similar way to the second, as

the same instructions are used.

We define another constant, dword2, to stand for the value of [ebp + 0c], which

is the same in both fragments.

op dword2 : -> EInt .

We define e and f in a similar way to c and d:

ops e f : -> InstructionSequence .

eq e = mov edi, dword2 ; or edi, edi .

eq f = mov edi, dword2 ; test edi, edi .

Proposition 4. e is equivalent to f, i.e., e ≡ f.

Proof. Proof is with a reduction. Since

Vout(e) = Vout(f) = {esi, ip, zf, sf, pf, cf, of}

we need only prove equivalence with respect to these variables because Proposition 1

states that all other variables (i.e., those outside Vout(e)) will be unchanged.

Maude> reduce s ; e [[esi]] is s ; f [[esi]] .

result Bool: true

Maude> reduce s ; e [[ip]] is s ; f [[ip]] .

result Bool: true

Maude> reduce s ; e [[zf]] is s ; f [[zf]] .

result Bool: true

Maude> reduce s ; e [[pf]] is s ; f [[pf]] .

result Bool: true

Maude> reduce s ; e [[sf]] is s ; f [[sf]] .

result Bool: true

Maude> reduce s ; e [[cf]] is s ; f [[cf]] .

34

2.6 Dynamic Analysis

mov edi, 2580774443

mov ebx, 467750807

sub ebx, 1745609157

sub edi, 150468176

xor ebx, 875205167

push edi

xor edi, 3761393434

push ebx

push edi

mov ebx, 535699961

mov edx, 1490897411

xor ebx, 2402657826

mov ecx, 3802877865

xor edx, 3743593982

add ecx, 2386458904

push ebx

push edx

push ecx

Figure 2.2: Allomorphic fragments of Win9x.Zmorph.A.

result Bool: true

Maude> reduce s ; e [[of]] is s ; f [[of]] .

result Bool: true

Therefore, e is equivalent to f.

The proof scripts in Maude for Propositions 2–4 can be found in Appendix A.

2.6.2 Example 2: Win9x.Zmorph.A

Intel 64 code that was found after the disassembly of two Win9x.Zmorph.A allomorphs

can be seen in Figure 2.2. It is known that this virus decrypts itself onto the stack

from hardcoded numbers [80]. As both allomorphs were retrieved from the entry points

of two executables infected with Zmorph, we might expect that the code fragments in

Figure 2.2 to be equivalent with respect to the stack. We will now prove that this is

the case.

In a similar way to the last proposition, we assign the two instruction sequences to

g and h respectively.

Proposition 5. g and h are equivalent with respect to the stack and instruction pointer,

i.e., g ≡W h where W = {stack, ip}.

Proof. We prove this by performing reductions to determine that the values of the stack

and the instruction pointer are equal after executing g and h:

Maude> reduce s ; g [[stack]] is s ; h [[stack]] .

result Bool: true

Maude> reduce s ; g [[ip]] is s ; h [[ip]] .

result Bool: true

35

Chapter 2: Formal Detection of Metamorphic Computer Viruses

Therefore g ≡W h where W = {stack, ip}.

We can check the resulting state of the stack by performing an additional reduction:

Maude> reduce s ; g [[stack]] .

result Stack: 1894369473 next 2281701373 next 2430306267 next

s[[stack]]

The original state of the stack is denoted by s[[stack]], and the _next_ operator

delimits individual values placed on the stack.

Therefore, the two allomorphic fragments are equivalent (with respect to the stack)

to the following Intel 64 instruction sequence:

push 2430306267 ; push 2281701373 ; push 1894369473

2.7 Static Analysis

In the previous section we showed how the formal definition in Maude of the syntax and

semantics of a subset of Intel 64 assembly language could be used for dynamic analysis

of metamorphic computer viruses. In this section we show how the formal definitions of

behavioural equivalence and semi-equivalence of programs given in Section 2.5 can be

used to prove that semi-equivalence can be extended to equivalence under certain cir-

cumstances. We will show how this proof can be used for static analysis of metamorphic

computer viruses.

2.7.1 Equivalence in Context

We will now prove that for certain stores s1, s2 and instruction sequences ψ, if s1 ≡W s2

then s1;ψ ≡ s2;ψ. We say that s1 and s2 are equivalent in context of ψ.

We begin by establishing that if two stores s1 and s2 are semi-equivalent with

respect to Vin(θ) for some instruction θ, then s1; θ and s2; θ are equivalent with respect

to Vout(θ).

Lemma 1. For all instructions θ and for all stores s1, s2:

s1 ≡Vin (θ) s2 implies s1; θ ≡Vout (θ) s2; θ .

Proof. Let x1, . . . , xn be an enumeration of V \ Vin(θ). Let s1,1 be some state identical

to s1, except

s1,1[[x1]] = s2[[x1]] .

36

2.7 Static Analysis

Likewise, let s1,i+1 be some state identical to si except

s1,i+1[[xi+1]] = s2[[xi+1]] .

By Definition 4,

s1; θ ≡Vout (θ) s1,1; θ ≡Vout (θ) s1,2; θ ≡Vout (θ) . . . ≡Vout (θ) s1,n; θ = s2; θ ,

and therefore s1; θ ≡Vout (θ) s2; θ, as desired.

Next, we show that if there are two stores that are semi-equivalent with respect to

W , and the set Vin(θ) for some instruction θ is covered by W , then the resulting stores

after executing θ are equivalent with respect to W ∪ Vout(θ).

Lemma 2. If s1 ≡W s2 and Vin(θ) ⊆W then:

s1; θ ≡W∪Vout (θ) s2; θ .

Proof. Assume s1 ≡W s2. By the previous lemma, we know that s1; θ ≡Vout (θ) s2; θ, so

we need only consider variables in W and not in Vout(θ). For any w /∈ Vout(θ), we have

s1; θ[[w]] = s1[[w]] and s2; θ[[w]] = s2[[w]], by Definition 3. If w ∈W , then s1[[w]] = s2[[w]]

by assumption that s1 ≡W s2, so s1; θ[[w]] = s2; θ[[w]]. Therefore, s1; θ ≡W∪Vout (θ) s2; θ,

as desired.

Now we can incrementally chain together sets of variables into equivalences for

instruction sequences with our main

Theorem 1. Let ψ be an instruction sequence such that ψ = θ1; θ2; . . . ; θm, where

θ1≤i≤m are instructions. If s1 ≡W s2 and for all j with 1 ≤ j ≤ m

Vin(θj) ⊆W ∪

j−1⋃

i=1

Vout(θi) (2.3)

then s1;ψ ≡W∪Vout (ψ) s2;ψ.

Proof. By induction on m. The base case, where m = 1, is shown in Lemma 2. For

the induction step, assume s1 ≡W s2 and for 1 ≤ j ≤ m

Vin(θj) ⊆W ∪

j−1⋃

i=1

Vout(θi) (2.4)

so that, by the induction hypothesis, s1;ψ
′ ≡W∪Vout (ψ′) s2;ψ

′, where ψ′ = θ1; θ2; . . . ; θm−1.

Now apply Lemma 2 again (taking the s1 of that lemma to be s1;ψ
′, s2 to be s2;ψ

′,

37

Chapter 2: Formal Detection of Metamorphic Computer Viruses

noting that, by (2.4) Vin(θm) ⊆W ∪Vout(ψ
′)), and since Vout(ψ) = Vout(ψ

′)∪Vout(θm),

this gives s1;ψ ≡W∪Vout (ψ) s2;ψ, as desired.

It is possible to recover equivalence of instruction sequences from semi-equivalence

in some cases. If s1 ≡W s2, then s1 and s2 have different values for variables in V −W

(which we henceforth write as W); but if all variables in W are overwritten in the same

way by some instruction sequence ψ, despite the differences in W , then s1 is equivalent

to s2 in the context of ψ, as stated in

Corollary 1 (Equivalence in Context). If p1 ≡W p2 and p1;ψ ≡W∪Vout (ψ) p2;ψ for

instruction sequences p1, p2, ψ and W ⊆ Vout(ψ) then p1;ψ ≡ p2;ψ.

Proof. If W ⊆ Vout(ψ) then p1;ψ ≡W∪W p2;ψ. Since W ∪ W = V it follows that

p1;ψ ≡ p2;ψ.

2.7.2 Examples Using Win9x.Zmorph.A

In Section 2.6 we proved that two allomorphic instruction sequences from the Win9x.-

Zmorph.A metamorphic computer virus, called g and h, were equivalent with respect

to the stack and the instruction pointer. In this subsection we present two examples

of the equivalence in context as applied to g and h, based on instruction sequences ψ

and ψ′. To our knowledge, neither of these instruction sequences appear in the source

code of Zmorph, but are constructions designed to illustrate the practical application

of equivalence in context.

In the first example we will show that g and h are equivalent in context of another

instruction sequence ψ, by applying the result from Corollary 1.

Example 3. By Proposition 1 we know that s; g[[v]] = s[[v]] for all v /∈ Vout(g),

and s; h[[v]] = s[[v]] for all v /∈ Vout(h). Therefore s; g[[v]] = s; h[[v]] for all v /∈

Vout(g) ∪ Vout(h), and so g ≡W h where V \ W = {edi, ebx, ecx, edx}. Given that

a metamorphic computer virus exhibits the same behaviour, but only changes its syn-

tax, it is reasonable to assume that any use of semi-equivalent code may not result in

a difference in behaviour, i.e., the non-equivalent variables will not be used to deter-

mine the effects of the rest of the program. We will show how an instruction sequence

ψ executed immediately after g and h results in an equivalent store, which allows the

metamorphic computer virus to freely swap g and h as long as ψ executes next.

Let ψ = mov edi, 0 ; mov ebx, 0; mov ecx, 0 ; mov edx, 0. In order to ap-

ply Theorem 1, we must first check the values of Vin(θ) and Vout(θ) for all instructions

θ in ψ:

38

2.7 Static Analysis

Vin(mov edi, 0) = {ip}

Vin(mov ebx, 0) = {ip}

Vin(mov ecx, 0) = {ip}

Vin(mov edx, 0) = {ip}

Vout(mov edi, 0) = {edi, ip}

Vout(mov ebx, 0) = {ebx, ip}

Vout(mov ecx, 0) = {ecx, ip}

Vout(mov edx, 0) = {edx, ip}

The following therefore hold:

Vin(mov edi, 0) ⊆ W

Vin(mov ebx, 0) ⊆ W ∪ Vout(mov edi, 0)

Vin(mov ecx, 0) ⊆ W ∪ Vout(mov edi, 0) ∪ Vout(mov ebx, 0)

Vin(mov edx, 0) ⊆ W ∪ Vout(mov edi, 0) ∪ Vout(mov ebx, 0) ∪ Vout(mov ecx, 0)

Therefore by Theorem 1, g;ψ ≡W∪Vout (ψ) h;ψ, and since W ⊆ Vout(ψ), we know by

Corollary 1 that g;ψ ≡ h;ψ.

Indeed, we can check using our Maude specification of Intel 64 that this is the case.

We introduce an instruction list in Maude which modifies a store S as follows:

op psi : -> InstructionSequence .

eq psi = mov edi, 0 ; mov ebx, 0 ; mov ecx, 0 ; mov edx, 0 .

The instruction list psi is therefore the same as instruction list ψ. We can then check

using a reduction that executing psi in the stores resulting from the execution of g and

h results in an equivalent store:

reduce s ; g ; psi [[stack]] is s ; h ; psi [[stack]] .

result Bool: true

reduce s ; g ; psi [[ip]] is s ; h ; psi [[ip]] .

result Bool: true

reduce s ; g ; psi [[edi]] is s ; h ; psi [[edi]] .

result Bool: true

reduce s ; g ; psi [[ebx]] is s ; h ; psi [[ebx]] .

result Bool: true

reduce s ; g ; psi [[ecx]] is s ; h ; psi [[ecx]] .

result Bool: true

reduce s ; g ; psi [[edx]] is s ; h ; psi [[edx]] .

result Bool: true

39

Chapter 2: Formal Detection of Metamorphic Computer Viruses

Since we know that Vout(g) ∪ Vout(h) ∪ Vout(ψ) = {stack, ip, edi, ebx, ecx, edx}, then

by Proposition 1 we can take these Maude reductions as a second proof that g;ψ ≡ h;ψ.

In the example above we showed that by overwriting the non-equivalent variables

from the semi-equivalent stores g and h in the instruction sequence ψ, that g and h

are equivalent in context of ψ. In the following example we will show that equiva-

lence can also be demonstrated where an instruction sequence ψ′ contains instructions

which overwrite the non-equivalent variables, as long as the instructions in ψ′ are not

dependent on the non-equivalent variables.

Example 4. Once again we know that g ≡W h where V \W = {edi, ebx, ecx, edx}.

Let ψ′ = pop edi ; pop ebx ; pop ecx ; mov ecx, edx.

Once again we must check the values of Vin(θ′) and Vout(θ
′) for all instructions θ′

in ψ′ before we can apply Theorem 1:

Vin(θ′1) = {ip, stack}

Vin(θ′2) = {ip, stack}

Vin(θ′3) = {ip, stack}

Vin(θ′4) = {ip, ecx}

Vout(θ
′
1) = {edi, ip}

Vout(θ
′
2) = {ebx, ip}

Vout(θ
′
3) = {ecx, ip}

Vout(θ
′
4) = {edx, ip}

The following therefore hold:

Vin(θ′1) ⊆ W

Vin(θ′2) ⊆ W ∪ Vout(θ
′
1)

Vin(θ′3) ⊆ W ∪ Vout(θ
′
1) ∪ Vout(θ

′
2)

Vin(θ′4) ⊆ W ∪ Vout(θ
′
1) ∪ Vout(θ

′
2) ∪ Vout(θ

′
3)

Therefore by Theorem 1, g;ψ′ ≡W∪Vout (ψ′) h;ψ
′, and since W ⊆ Vout(ψ

′), we know by

Corollary 1 that g;ψ′ ≡ h;ψ′.

Again, it is possible to double-check that g;ψ′ ≡ h;ψ′ using the Maude specification of

Intel 64. We create an instruction sequence psi’ = ψ′ as follows:

op psi’ : -> InstructionSequence .

eq psi’ = pop edi ; pop ebx ; pop ecx ; mov edx, ecx .

Then, we can check the stores are equal be performing a reduction for each variable in

Vout(g) ∪ Vout(h) ∪ Vout(ψ
′) = {stack, ip, edi, ebx, ecx, edx}:

reduce s ; g ; psi’ [[stack]] is s ; h ; psi’ [[stack]] .

40

2.8 Applications to Detection of Metamorphic Viruses

result Bool: true

reduce s ; g ; psi’ [[ip]] is s ; h ; psi’ [[ip]] .

result Bool: true

reduce s ; g ; psi’ [[edi]] is s ; h ; psi’ [[edi]] .

result Bool: true

reduce s ; g ; psi’ [[ebx]] is s ; h ; psi’ [[ebx]] .

result Bool: true

reduce s ; g ; psi’ [[ecx]] is s ; h ; psi’ [[ecx]] .

result Bool: true

reduce s ; g ; psi’ [[edx]] is s ; h ; psi’ [[edx]] .

result Bool: true

2.8 Applications to Detection of Metamorphic Viruses

In the previous sections we have shown how the formal specification in Maude of the

Intel 64 assembly programming language enables static and dynamic analysis to prove

equivalence and semi-equivalence of code. We have shown how metamorphic computer

viruses use equivalent and semi-equivalent code in order to avoid detection by signature

scanning. Therefore, given the techniques for code analysis described above, it seems

reasonable that static and dynamic analysis based on the formal specification of Intel 64

should give ways to detect metamorphic computer viruses by proving the equivalence of

different generations of the same virus to some virus signature, thus enabling detection

of metamorphic computer viruses by a signature-based approach.

Implementation of a industrial standard tool for metamorphic computer virus de-

tection is beyond the scope of this thesis, but some suggestions for possible applications

of the techniques for proving equivalence of metamorphic code are as follows.

2.8.1 Dynamic Analysis

2.8.1.1 Signature Equivalence

The most obvious application for detection is based on the techniques used in Sec-

tion 2.6 to prove by dynamic analysis the equivalence of code fragments. Suppose that

a signature σ is stored in a disassembled form, and that there is a fragment of sus-

pect code c within an executable file. Then, the effects of c and σ on a generalised

store could be discovered by performing Maude reductions as in Section 2.6.1. The

resulting stores could be compared, and if equal, would prove that c ≡ σ. Computer

virus signatures must be sufficiently discriminating and non-incriminating, meaning

41

Chapter 2: Formal Detection of Metamorphic Computer Viruses

that they must identify a particular virus reliably without falsely incriminating code

from a different virus or non-virus (ch.5, [43]). If a suspect code block was proven

to have equivalent behaviour to a signature, this would result in identification to the

same degree of accuracy as the original signature. (Since a signature uses a syntactic

representation of the semantics of a code fragment to identify a viral behavioural trait,

any equivalent signature must therefore identify the same trait.) If the code block

is only semi-equivalent, then the accuracy of detection could be reduced. However

if equivalence-in-context could be proven then accuracy would again be to the same

degree as the original signature.

2.8.1.2 Signature Semi-Equivalence

It might be the case that a given metamorphic computer virus is known to write

certain values onto the stack, and therefore the state of the stack at a certain point

in the execution of the metamorphic virus could be a possible means of detection. In

Section 2.6.2, two variants of the Win9x.Zmorph.A metamorphic computer virus were

shown to be equivalent with respect to the stack, meaning that the state of the stack

was affected in the same way by both generations of the virus. Therefore, the same

technique could be used for detection. In this case, equivalence need not be proven, as

the detection method relies on equivalence with respect to a subset of variables, i.e.,

semi-equivalence.

2.8.2 Static Analysis

2.8.2.1 Formally-Verified Equivalent Code Libraries

One important result in the field of algebraic specification is the Theorem of Constants

(p.38, [58]). Informally, the theorem states that any nullary operator (i.e., constant)

used in a reduction within an algebraic specification system such as Maude, can be used

as a variable in that reduction. This holds because the definition of variables within

Maude is that they are actually constants within a supersignature, i.e., a variable in a

Maude module is a constant within another module that encompasses it. This lets us

use constants in place of variables, e.g., for the reductions used in Proposition 2 we use

a constant s to denote any store s.

This means that the proofs of equivalence and semi-equivalence of the code frag-

ments in Propositions 2–4 still hold if we swap the program variable names for other

program variable names of the same sort (e.g., we don’t interchange stack variables and

42

2.8 Applications to Detection of Metamorphic Viruses

“ordinary” variables such as the eax register). In Proposition 2 we show that

push ebp ; mov ebp,esp ≡W push ebp ; push esp ; pop ebp (2.5)

where W = V − {ip}.

By the Theorem of Constants we can replace ebp with eax, and esp with edx,

for example, and the statement of semi-equivalence still holds. Therefore, we might

rephrase the above with a more standard mathematical notation, e.g.:

push x ; mov x,y ≡W push x ; push y ; pop x (2.6)

Therefore, if we know that metamorphic computer viruses might use a set of equations

similar to Equation 2.6, then we may wish to build up a library of equivalent instruction

lists based on those equations. In doing so we could decide, for instance, that all

instances of the left-hand side of Equation 2.6 should be “replaced by” the right-hand

side. If there was a metamorphic computer virus that exhibited only this kind of

metamorphism, then we would have effectively created a normal form of the virus

that would enable detection by straightforward signature scanning. Of course, this

is example is intentionally kept simple, and many metamorphic computer viruses will

employ code mutation techniques which are far more complex, but the general idea of

code libraries which we are formally verified using a formal specification language such

as Maude is perhaps useful.

2.8.2.2 Equivalence in Context

As shown in Sections 2.6.1 and 2.6.2, metamorphic computer viruses can use semi-

equivalent code replacement in order to produce syntactic variants in order to evade

signature-based detection. The obvious advantage of this stratagem is that restricting

metamorphism to code sequences that are equivalent limits the number of syntactic

variants. An obvious example is that metamorphic computer viruses may wish to use

code that treats all variables equivalently except the instruction pointer, i.e., equivalent

code of differing length that is semi-equivalent with respect to every variable except the

instruction pointer. Clearly, this will not pose a problem for the metamorphic computer

virus as long as there is no part of its program that is dependent on the value of the

instruction pointer at a given point after the mutated code.

It is likely, therefore, that a code segment c of a suspect executable will be semi-

equivalent to some signature σ of a metamorphic computer virus. If it were possible

to prove equivalence-in-context, i.e., that c;ψ ≡ σ;ψ, where ψ is some code appearing

immediately after c in the suspect executable, then it would be known that σ was a

43

Chapter 2: Formal Detection of Metamorphic Computer Viruses

Figure 2.3: Signature-based detection of a metamorphic computer virus, by applica-
tion of equivalence-in-context. Instruction sequences c and σ are semi-equivalent with
respect to W . Applying the result in Corollary 1 to c, σ and ψ reveals that in fact
c;ψ ≡ σ;ψ and therefore c has been identified as equivalent to signature σ, resulting
in detection of the virus.

successful match to c and detection of the virus would be achieved. (See Figure 2.3 for

an illustrated example.)

2.8.3 Combination With Other Approaches

Another potential application of the methods for computer virus detection described

above, is to combine them with other means of metamorphic computer virus detec-

tion. For instance, the formally-verified equivalent code library described above may

not always result in reduction of every generation of a metamorphic computer virus

to a normal form. However, the overall syntactic variance of the set of all generations

may be significantly reduced, so that another technique may be used to enable detec-

tion. For instance, the neural network-based approach of Yoo et al (described below

in Section 2.9.1.5) relies on the identification of similar code structures, and therefore

may be assisted by an equivalent code library.

2.9 Summary

As we said in Section 1.1.4, detection of computer viruses is, in general, an undecidable

problem. Metamorphic computer viruses are particularly difficult; there are known

cases where detection is computationally intractable [136, 17, 18, 169, 72], or even

undecidable [26, 40, 47]. Not all metamorphic computer viruses are so difficult to

44

2.9 Summary

detect, and therefore research into practical ways to detect metamorphic computer

viruses is essential.

In this chapter we showed how a formal algebraic specification of an assembly pro-

gramming language and a formal notion of equivalence can be used to detect meta-

morphic computer viruses through static and dynamic analysis. In Section 2.2 we

described the difficulties of detecting metamorphic computer viruses using existing de-

tection techniques, and gave an overview of the various forms of code metamorphism

employed by metamorphic computer viruses. Then, in Section 2.3 we gave an overview

of the Maude formal notation, and described its applicability to the specification of

the syntax and semantics of programming languages. In Section 2.4 we showed how a

formal specification of the syntax and semantics of a subset of the Intel 64 assembly

language can be given using Maude, and how Maude’s built-in rewriting engine can turn

a static specification into an executable specification in which we gain an interpreter,

essentially for free.

In Section 2.5 a notion of program equivalence was defined as the equality of stores

after the execution of two programs, and program semi-equivalence was defined as the

case where only a subset of variables in the resulting stores are equal. In Section 2.6 we

demonstrated proofs of the equivalence and semi-equivalence of real-life metamorphic

computer virus code using the formal specification of Intel 64, proving its use as a tool

for dynamic analysis of metamorphic computer viruses in particular, and assembly lan-

guage programs in general. In Section 2.7 we proved that under certain circumstances

semi-equivalence can be extended to equivalence, and we showed how this could be

used for static analysis in the detection of metamorphic computer viruses. Finally, in

Section 2.8 we gave some directions for the application of our approach to the practical

problem of metamorphic computer virus detection.

Now we will critically assess the novelty and contribution of the research described

in this chapter through a comparison with related work in the field.

2.9.1 Related Work

There are currently many avenues of research into the detection of metamorphic com-

puter viruses, both academic and industrial. The aim of this section will be to compare

the work presented in this chapter with other approaches to metamorphic computer

virus detection given in the literature. It is likely that much research into this area is

conducted by commercial anti-virus companies; however, much of this is not published

and therefore an accurate comparison is not possible. There is some information in the

literature concerning methods used by commercial anti-virus software for metamorphic

computer virus detection, and this is covered in Section 2.9.1.6. However, given that

45

Chapter 2: Formal Detection of Metamorphic Computer Viruses

the most detailed information on comparable approaches is in the academic literature,

a comparison between this work and the work presented in this chapter will be the

focus for this section.

2.9.1.1 Control- and Data-Flow Analysis

Common assembly programming languages such as Intel 64 are in the imperative

paradigm, that is, successive statements within the language describe successive up-

dates to a store, which maps variable names to values. In assembly languages, loops

are achieved through branching statements which update the value of the instruction

pointer, effectively allowing for the repetition of statement lists within a program.

Control-flow analysis consists of extracting the flow of control from a sequence of state-

ments, itself dependent on the ordering of jump statements within the program. Since

different generations of the same computer virus might use the same flow of control,

control-flow analysis can be used to detect metamorphic computer viruses. Data-flow

analysis is similar to control-flow analysis, except the flow of information through the

program is analysed, rather than the flow of control. For example, an Intel 64 assembly

language instruction that updates the value of register eax with the value of register

ebx, is itself informationally-dependent on a previous instruction which set the value

of ebx. Therefore, both control and data-flow analyses calculate the dependencies of

instruction, and enables the construction of graphs which display this information.

Lakhotia & Mohammed describe an algorithm for imposing order on high-level

language programs based on control- and data-flow analysis [106, 88]. First, a program

tree is generated, showing the control-flow of a sequence of statements. Using data-

flow analysis, the program tree is then partitioned into sets of statements that are

re-orderable. Each statement in the program tree is assigned a number in a depth-

first manner, with statements in re-orderable sets given unique numbers according to

a specially-defined numbering system. A reconstructed program tree is then generated

in which the statements are ordered as per the numbering system in the previous step.

The focus of this approach, therefore, is to reverse the effects of statement re-

ordering, variable renaming (see Sections 2.2.1.4 and 2.2.1.2 respectively) and “expres-

sion reshaping” (a kind of metamorphism not seen in assembly languages and therefore

not given in Section 2.2.1) using a static analysis-based approach. The above algorithm

attempts to generate a normalised (“zero”) form of statement lists mutated by these

metamorphism types. The authors note that their algorithm is an heuristic, and there-

fore it will not always reduce programs to a normalised form, but empirical evidence

given suggests that the reduction of syntactic variants to be significant.

Bruschi et al [19] describe a similar method for malware detection to the one

46

2.9 Summary

described by Lakhotia & Mohammed, which uses code normalisation for the following:

• To identify junk code.

• To simplify algebraic expressions.

• To remove the reliance on intermediary variables used in assignments.

• To remove dead paths by control flow analysis.

• To simplify the control flow of the program.

The above strategies are employed in order to reduce the number of syntactic variants

of a single program behaviour, and therefore to aid in the detection of metamorphic

computer viruses. The detection algorithm described has a two-stage process. First the

code normaliser decodes the disassembled code into a form which allows control- and

data-flow analysis, before performing a number of transformations in order to normalise

the code. The output of the code normaliser is then passed to the code comparator,

which works on the assumption that inter-procedural control-flow graphs are unchanged

across metamorphic computer virus generations. Therefore, the problem of detection is

reduced to the problem of deciding whether two sub-graphs are isomorphic. If the code

comparator finds that the inter-procedural control-flow graph of a suspect executable

is isomorphic to some signature inter-procedural control-flow graph of a metamorphic

computer virus, then the suspect executable is identified as being infected by the virus.

A test on 115 generations of the MetaPHOR computer virus revealed that the code

detection method accurately identified all generations as having the same control-flow

graph, therefore making detection possible.

Another approach is described by Bonfante et al [16]. In a similar way to Bruschi et

al’s approach, a control flow graph is extracted from a computer virus and is used as a

signature for that malware. Therefore, detection is reduced to the problem of ckecking

isomorphism between two graphs: one graph is the signature, the other is the suspect

executable. Next, the authors tackle the problem of signature database management.

Rather than store the graphs themselves in a database, the graphs are translated into

canonical terms. A tree automaton can then be constructed which recognises all of the

canonical term signatures. Then, detection consists of extracting a control flow graph

from a suspect executable e, translating it into a canonical term et and executing the

tree automaton with et as an input. The tree automaton will indicate whether or not e

contains any of the malware control flow graphs. The efficiency of the tree automaton

enables indication of infection of a suspect executable of size n in O(n2) time, or in

O(n) time with the use of some heuristics in the construction of the control flow graphs.

47

Chapter 2: Formal Detection of Metamorphic Computer Viruses

Finally, the authors describe experiments in which different lower bounds for the size

of the control flow graph extracted from malware are tested. It is found that control

flow graphs of 19 nodes or greater are sufficient to reduce false positives to less than

0.1%.

Another approach involving control flow graphs and call graphs was given by Bi-

lar [11]. A call graph is a graph in which the nodes are functions from an executable

program, and the edges indicate that one function calls another. A sequence of instruc-

tions that has no branching into its middle and ends in a branching instruction (e.g.,

jmp) is called a basic block. A set of 400 executables was used as a sample set, in which

280 were non-malware and 120 were malware. The indegree and outdegree of a function

are the number of calls to and from the function respectively. The correlation between

indegree and outdegree was calculated for the sample set, but no correlation was found

for either malware or non-malware. Additionally, both the malware and non-malware

sample groups were grouped into three groups with similar function counts in order

to test for a correlation between instruction count in functions and complexity of the

executable, but no correlation was found. Next, the author tested whether the inde-

gree, outdegree and the basic block count followed a truncated power law distribution,

i.e., whether the probability of the occurrence of a function with a given indegree, out-

degree or basic block count decreases as a power law with respect to the size. After

finding power law exponenents for each variable, the author found that the power law

exponent for basic block size of the malware resulted in a steeper slope that for the

non-malware, meaning that malware executables tend to have a lower number of basic

blocks. Therefore this fact could be used as an heuristic to detect malware. The author

theorised that malware executables tend to be simpler, have more limited functionality,

are compiled differently and may be designed differently than non-malware, therefore

resulting in a tendency towards lower block count5.

2.9.1.2 Semantics Template Matching

Christodorescu et al describe an approach to metamorphic computer virus detection

using a signature-matching approach, in which the signatures contain information re-

garding the semantics, as well as the syntax, of the metamorphic computer virus [28].

A formal semantics of assembly language instruction sequences is given based on the

following:

• A template describes a sequence of instructions, together with set of variables and

symbolic constants that appear in that instruction sequence.

5The author would like to thank Dr. Bilar for his comments on this review.

48

2.9 Summary

• An execution context for a template describes a pre-condition for the execution of

the template, in which every symbolic constant from the template has a specified

value.

• A template state consists of a function mapping variables to values, a value of the

program counter (i.e., instruction pointer) and a function that assigns values to

memory address.

The execution of the instruction sequence defined in the template is described nat-

urally as a labelled transition system in which the states are the template states, the

actions are instructions and the labelled transition relation describes states and their

successive states after execution of an instruction. It is possible to define a signature for

a metamorphic computer virus using a template. Detection then proceeds by matching

the code within a suspect executable to one of a set of templates stored in a database.

This is described formally using an algorithm.

The authors also present some interesting formal results. First they prove that

the problem of template matching is undecidable in general. They also prove that

the aforementioned detection algorithm is sound with respect to the template match-

ing problem. In a later paper Preda et al [115] are able to prove the correctness of

this approach with respect to instruction reordering, variable renaming and junk code

insertion (see Section 2.2.1 for definitions).

Finally, the detection algorithm is tested for three different real-life worm examples:

Netsky, B[e]agle and Sober. Templates are defined for a decryption loop and a mass

email procedure common to worms found in the wild. Empirical analysis showed that

the decryption loop was detected in all three worms, whereas the mass email procedure

was found in only two of the worms. Therefore the approach is applicable to real-life

detection scenarios.

2.9.1.3 Program Rewriting and Normalisation

Bruschi et al describe a normalisation procedure based on program rewriting [20, 21].

This approach to metamorphic computer virus detection differs from the approach by

Bruschi et al described in Section 2.9.1.1, although it is also based on normalisation.

First, the assembly language instructions are translated into a “meta-representation”

which describes (informally) the semantics of the instructions. For example, the instruc-

tion pop eax is meta-represented as rules “r10 = [r11]” and “r11 = r11 + 4”, where

r10 and r11 denote register variables. Then, the code is rewritten using optimisation

techniques commonly used by compilers:

49

Chapter 2: Formal Detection of Metamorphic Computer Viruses

• Propagation: values assigned to intermediary variables are used directly instead

of the intermediary variable. For example the meta-representation instruction

sequence “r10 = 0 ; r11 = r10” can be simplified to “r10 = 0 ; r11 = 0” using

propagation.

• Dead code elimination: removal of instructions whose results do not affect the

behaviour of the program. “Dead code” is the same as the junk code discussed

in Section 2.2.1.

• Algebraic simplification: algebraic laws of number theory can be applied to the

meta-representation in order to simply expressions, e.g., 0 + x = x can be used

to simplify any term matching the left-hand side by rewriting it to the term on

the right-hand side.

• Control flow graph compression: false conditional and unconditional jumps are

unravelled using control-flow analysis similar to that described in Section 2.9.1.1.

Normalisation will not always be enough to uniquely identify metamorphic computer

viruses, so the authors combine their optimisations with a number of metrics designed

to detect metamorphic computer viruses heuristically. For example, metrics can be

the number of nodes in a control-flow graph, or the number of indirect jumps in a

normalised code sample. The values of the n various metrics are stored as a point in a

Euclidean n-space, and the difference between two code samples is then calculated as

the Euclidean distance between the two points.

An empirical analysis of the efficacy of the approach was conducted using a sample

of generations of the MetaPHOR metamorphic computer virus. It was found that after

normalisation, the average Euclidean distance of the generations was significantly lower

than before, and therefore the approach can reduce the amount of variation in syntax

seen in MetaPHOR, and possibly other metamorphic computer viruses.

Another approach to rewriting-based normalisation was taken by Walenstein et

al [150]. This time, rewriting of the assembly language programs was done directly,

bypassing the need for a meta-representation. First the problem is framed as a term-

rewriting problem; the rules by which the metamorphic code engine creates new gen-

erations of the virus are described as rewrite rules within a term-rewriting system.

The authors consider the problem of constructing a normalisation procedure for an

arbitrary metamorphic computer virus, which they call the normaliser construction

problem (NCP): given a non-confluent metamorphic engine term rewriting system M ,

construct a canonical (i.e., confluent and terminating) term rewriting system N called

the normaliser such that all terms from M rewritten using N are equivalent semanti-

cally.

50

2.9 Summary

The method used is as follows. First, termination is ensured by using a reordering

procedure to order the rewrite rules so that the term is shortened on each rewrite. Then,

confluence is attempted by using the Knuth–Bendix completion procedure, although

the authors note that the algorithm is not guaranteed to terminate with success. For the

case where the algorithm does not terminate, the authors give some possible directions

for producing approximate solutions to the NCP.

As an example, the authors create an NCP for the Win32.Evol metamorphic com-

puter virus. After extracting the metamorphic engine term rewriting system, an NCP

called P0 was created using the reordering procedure, but to ensure termination con-

fluence was not assured. However, it was still useful as it resulted in a reduction of the

number of synactic variants of the virus across generations. The authors also created a

canonical term rewriting system, P1, which was able to reduce all generations of Evol

to the same normalised form. The application of the technique to Evol proves that the

approach is effective for detection of metamorphic computer viruses.

2.9.1.4 Metamorphic Engine Analysis

Choucane & Lakhotia describe an approach to metamorphic computer virus detection

based on the assumption that metamorphic computer viruses often use the same meta-

morphism engine, and that by assigning an engine signature it ought to be possible to

assign a probability that a suspect executable is an output of that engine [27].

The rewrite rule set of the metamorphic code engine is obtained in a similar to

manner to Walenstein et al’s approach described in the previous section. The rewritten

forms of the rules (the “right-hand sides”) are seen as “clues” for detection of that

particular engine. Since the rules are applied by metamorphic computer viruses prob-

abilistically according to the specification of the engine, each rule is accompanied by

a rule application probability. A scoring function takes an instruction sequence and

set of rules and their application probabilities, and returns a score proportional to the

evidence linking the set of rules to the instruction sequence, i.e., the higher the score,

the more likely it is that the instruction sequence is a product of that particular engine.

Experiments were performed in order to demonstrate that the scoring function in-

creases as the number of the generation of the metamorphic computer virus increases,

i.e., the offspring of the virus scores more highly than its ancestors. This is the ex-

pected result, as it is likely that more of the code will be re-written according to the

rules over successive generations, and therefore the offspring’s code will contain more

clues. The authors do not provide a baseline score for uninfected executables, so it

is difficult to determine whether the approach would be useful for metamorphic com-

puter virus detection, however, given a known infected executable the method could

51

Chapter 2: Formal Detection of Metamorphic Computer Viruses

clearly aid identification of which metamorphic computer virus engine was responsible

for producing the code, assuming that its rules have already been included in the clue

database.

2.9.1.5 Neural Network Approaches

Yoo & Ultes Nitsche [167, 168] present a unique approach to metamorphic computer

virus detection, which involves training a type of artificial neural network known as

a self-ordering map (SOM). SOMs exhibit unsupervised learning, and therefore can

be trained to recognise computer viruses within executable files. The approach is

completely non-signature based, and once the SOM has been trained it can be applied

to any suspect executable. For example, the authors apply train a SOM to detect the

Win32.Apparition metamorphic computer virus, which can then be detected by the

SOM. The other experiments conducted by the authors are for polymorphic, rather

than metamorphic computer viruses, so it is difficult to assess whether this approach

could be generalised for other kinds of metamorphic computer viruses. An additional

problem noted by the authors is the sensitivity of the approach to operator skill, as the

parameters of the SOM must be set manually, and the success of the detection method

is highly dependent on their particular values.

2.9.1.6 Industrial Approaches

Commercial anti-virus software has the ability to detect certain types of metamorphic

computer virus. As the technical details of commercial anti-virus scanners tend to be

kept secret, it is difficult to know the exact state of the art. However, recent publications

by Ször [139, 140] give a few abstract technical details:

• Geometric detection: alterations to the file structure indicate the presence of some

(metamorphic) computer viruses. For example, the Win95/Zmist metamorphic

computer virus increases the virtual size of the data section of the infected ex-

ecutable by 32 KB, but the physical size remains unchanged. This fact allows

Zmist to be detected by anti-virus software.

• Detection by Disassembly : once a metamorphic computer virus is disassembled, it

can be easier to detect, as there are sometimes instructions which are common to

computer viruses, such as cmp ax, "ZM" for checking whether a file is executable.

The presence of this instruction can be used a heuristic for detection.

• Detection by Emulation: metamorphic computer viruses can be detected through

dynamic analysis by emulating the suspect code. The state of the machine at a

52

2.9 Summary

given point may be an heuristic for detecting a particular computer virus.

2.9.2 Comparisons with Related Work

Based on the overview of the various other approaches to metamorphic computer virus

detection given above, we will now appraise critically the novelty and contribution of

our approach. A natural way to compare a variety of metamorphic computer virus

detection methods would be to compare empirically their effectiveness with respect

to a set of known metamorphic computer viruses; however, much of the work in the

literature, including the work in this chapter, is at the proof-of-concept stage, and

therefore the tools for such a comparison do not exist. Therefore, the comparisons in

this section will be qualitative.

First, we will examine the benefits of the formal nature of our approach in compar-

ison with the both formal and informal approaches above. Then, we will contrast our

general, theoretical approach to metamorphic computer virus detection to some of the

related work, which may be described as more specific and engineering-based. Finally,

we will discuss the applicability of the techniques described in the chapter to problems

beyond detection of metamorphic computer viruses.

2.9.2.1 Static and Dynamic Analysis

Most of the approaches described earlier tackle metamorphic computer viruses using

static analysis, in which virus code is scanned and analysed. The results of this anal-

ysis can then be used to detect metamorphic computer viruses in a variety of ways.

One exception is detection by emulation, which is a form of dynamic analysis. As we

have demonstrated in this chapter, the formal Maude specification of Intel 64 assem-

bly language is very flexible, and can be used for both static and dynamic analysis of

metamorphic computer virus code. When combined with the Maude term rewriting

engine, the specification of Intel 64 becomes executable, essentially providing an inter-

preter/emulator for that language. In addition, the interpreter is formally specified;

as long as we agree with the definitions of the syntax and semantics of Intel 64 in

the Maude specification, we can be satisfied that the results of dynamic analysis are

correct. This is a clear advantage over virtual machines or emulators, whose bugs may

result in incorrect analysis of code. Of course, the Maude term rewriting engine is

a software application also, and may also contain bugs. However, unlike virtual ma-

chines and emulators, the Maude software has been designed with formal verification

in mind, and is open source, well-documented and well-supported. In addition, the Full

Maude specification language is defined in terms of Core Maude [29], further reducing

53

Chapter 2: Formal Detection of Metamorphic Computer Viruses

the likelihood of problems due to bugs in the code. Another advantage of the Maude

specification of Intel 64 is that it is easier to modify than an emulator. For example,

Intel recently updated the 32-bit instruction set to include 64-bit instructions [75]. In

order to support these new instructions, an emulator would need to be re-programmed

and checked for bugs. However, support for the new instructions could be added easily

to the Maude specification, by declaring new operators and equational rewrite rules in

the same manner as the existing instructions.

As well as providing a formal tool for dynamic analysis, we showed earlier that the

specification can also be applied to the problem of static analysis. Suppose we have

two fragments of code which we know are semi-equivalent based on dynamic analysis.

Then, as we showed in Examples 1 and 2, we can use the Maude specification to derive

the values of Vin and Vout for the fragment of code which follows. Then, by applying

the equivalence-in-context theorem, we can prove that semi-equivalent code is actually

equivalent in context.

Therefore, the Maude specification of the Intel 64 assembly language described in

this chapter is useful for both static and dynamic analysis. Indeed, we are not limited

to the methods given here; it seems likely that there are other forms of static analysis,

similar to the equivalence-in-context theorem, which can be supported by the Intel

64 specification. Dynamic analysis could be expanded too, to include applications

to problems posed by virtualization-based malware. We discuss the potential of this

methodology in more detail in Chapter 5.

2.9.2.2 Formal and Informal Approaches

Most of the approaches to metamorphic computer virus detection described above are

based on some description of the syntax and semantics of a programming language.

(The only exception is the approach of Yoo & Ultes-Nitsche to the detection of meta-

morphic computer viruses using neural networks, in which the semantics of the program

being analysed are completed ignored, as the program code is treated only as data.)

Perhaps then, the most distinctive feature of our approach to metamorphic computer

virus detection is that the description of the programming language is both explicit and

formal, i.e., it is based on a formal specification of the syntax and semantics of an as-

sembly programming language written in a formal specification language. In contrast,

many of the other approaches to detection, perhaps with the exception of the work by

Christodorescu et al (see Section 2.9.1.2), are informal. For example, in control-flow

analysis (see Section 2.9.1.1), the flow of control is extracted from a program based on

an implicit assumption about the way that looping instructions work, i.e., they update

the value of the instruction pointer. Based on this assumption, the control-flow graph

54

2.9 Summary

is constructed. Another example is Bruschi et al’s approach to program rewriting and

normalisation, in which a program is translated into a meta-representation based on

an implicit knowledge of the behaviour of the program’s instructions.

The advantage of a formal specification of a virus’s programming language is that it

is possible to prove properties of a section of code, which in turn allows for the develop-

ment of methods of analysis which themselves are formally verifiable. A good example

is the proofs of the equivalence of viral code in Sections 2.6 and 2.7. Assuming that

we know that the implicit formal specification in Maude is accurate, then given the

existence of reduction as proof, then by performing reductions within Maude we can

prove a property of a program (in this example, its equivalence to another program)

using a number of reductions in Maude. Checking the accuracy of the formal speci-

fication is equivalent to checking the accuracy of the axioms within a logical system,

that is, we formulate the formal specification of the Intel 64 assembly language with

truths (i.e., axioms) that we hold to be self-evident. For example, in the specification

of the mov a, b instruction which assigns the value of variable b to variable a, then we

specify that this the value of variable a after executing mov a, b as equal to the value of

b before we executed the instruction using the following equational rewrite rule, which

expresses this truth formally:

eq S ; mov V,E [[V]] = S[[E]] .

The danger in using an implicit and/or informal description of the programming lan-

guage is that our assumptions are not made clear, and therefore any detection method

or program analysis based on the description may not do the job it is designed to do.

(The advantages of formal systems are well known, of course, and are discussed in more

detail in Section 1.3.)

However, there is an obvious disadvantage to using a formal approach to program

specification, verification and analysis. In order to reap the rewards of a formal spec-

ification of a programming language, first we must create it, which itself can be a

time-consuming, but nevertheless straightforward, process. For example, in order to

define the syntax and semantics of a 10-instruction subset of the Intel 64 assembly lan-

guage instruction set for the proofs in Section 2.6, a Maude specification of around 180

lines had to be produced, which can be seen in Appendix A. The main difficulty was

not in the writing or debugging of the Maude specification, but rather in the translation

from the informal and implicit definitions of the instructions given in the official Intel

literature (see [75]).

Once created, though, a formal specification of an assembly programming language

could be applied to a number of different problems in the field of computer virology. For

example, the approach of Lakhotia and Mohammed to control- and data-flow analysis

55

Chapter 2: Formal Detection of Metamorphic Computer Viruses

resulted in a rewritten version of a program called a zero form. The specification of

Intel 64 could be used to prove the equivalence of the original program and its zero

form through dynamic analysis in manner of Section 2.6. Another example would be

in the code normalisation procedure described by Bruschi et al, in which the code

is transformed into a meta-representation. A formal specification of the syntax and

semantics of the meta-representation could be written in Maude in a similar manner

to the Maude specification of Intel 64, and the translation of the Intel 64 into the

meta-representation could be then formally verified through proofs that an instruction

and the translated form have the same effect on a generalised store. (Indeed, a similar

approach was taken by Hamel & Goguen, who use a formal OBJ specification to prove

the correctness of an optimising compiler [68].)

2.9.2.3 Generality and Readiness for Application

Since one of the principal aims of the field of computer virology is to produce tools

for improved management of the computer virus threat, an important consideration is

the additional development time that might be required to produce a general-purpose

working implementation from “proof-of-concept” systems described in research papers.

For example, the approach of Chouchane & Lakhotia to metamorphic computer virus

detection involves an observed characteristic of existing viruses: that metamorphism

engines used by several different viruses tend to output similar code, and that this

can be detected using static analysis. It seems likely, given the tool described in their

paper, that the technique could be readily applied within real-life anti-virus software,

as the technique described is straightforward and could be applied using well-proven

string matching algorithms used within the majority of existing anti-virus software. In

contrast, the techniques described in this chapter rely on a formal specification of Intel

64 in Maude, which requires a full Maude interpreter, or alternatively some specialised

version of the interpreter designed to use only the specification of Intel 64. It is very

unlikely that this capability currently exists within anti-virus software, and therefore

there would be an increased cost of implementation.

However, the additional cost is mitigated by the generality of the approach. Whereas

the metamorphic engine approach to detection would be a straightforward extension of

existing technology, it relies on a particular feature of metamorphic computer viruses

that is present today, but may not continue. For example, if metamorphic computer

viruses did not re-use their metamorphism engines, then the technique for detection

would not work. Alternatively, if metamorphic computer virus technology allows for

behavioural mutation of a metamorphism engine, then again, the technique would

not work. In contrast, our approach is based on a formal specification of an assem-

56

2.9 Summary

bly programming language, and the methods for proving program equivalence and

equivalence-in-context are applicable to any programs written in this language. Even if

the predominant programming language in which computer viruses are written should

change from Intel 64, the general technique of proving equivalence and semi-equivalence

is applicable as long as there is a formal specification of that language in Maude. Given

the success of the Rewriting Logic Semantics Project discussed in the next section, it is

likely that such a specification would indeed be possible. In addition, the equivalence-

in-context technique given in Section 2.7 should be applicable to any programming

language in which statements are executed sequentially, and in which variables are the

means of data storage.

Therefore, it could be argued that whilst the cost of implementation of our approach

could be greater than other approaches given in the literature, our approach is more

general and therefore more likely to be useful for a greater period of time, and in a

greater number of scenarios.

2.9.2.4 Applications Beyond Computer Virology

The applicability of the Maude specification of Intel 64 goes beyond detection of meta-

morphic computer viruses. It was mentioned in Section 2.1.1 that the practice of formal

specification using Maude is well-understood, and has its roots in the formal specifica-

tion language OBJ. The syntax and semantics of many programming languages have

been given using Maude and OBJ [105], including generic imperative programming

languages [58, 59], Java (both the language [128] and compiled bytecode [41, 42]),

Scheme [35], Concurrent ML [25], the ABEL hardware description language [81] and

the C preprocessor [53].

The Intel 64 specification also supports one of the primary aims of the Rewriting

Logic Semantics Project [105], which exists to develop formal specifications of various

programming languages in order to provide a formal software verification infrastructure.

The Intel 64 programming language is used on the majority of personal computers at

the time of writing, and therefore the formal specification presented in this thesis has

numerous applications.

There are numerous advantages to specifying programming languages in Maude.

The resulting specifications are general purpose, and can be used to prove properties of

Intel 64 assembly language programs. The executable nature of Maude specifications

means that we obtain an interpreter for specified languages, such as Intel 64, essentially

for free. There are several generic formal tools based on Maude that can be used with

any specification of a language, such as the Maude model checker and inductive theorem

prover [105]; therefore, we do not need to develop these tools for Intel 64, as they are

57

Chapter 2: Formal Detection of Metamorphic Computer Viruses

part of the Maude framework in which Intel 64 has been specified.

To our knowledge, our formal algebraic specification of the syntax and semantics of a

subset of the Intel 64 assembly programming language is novel. Whilst we have not yet

specified every instruction within the language, we have proven that such a specification

is straightforward to produce using a specification language like Maude. Indeed, based

on the numerous applications of Maude to programming language specification in the

literature, we are confident that the rest of the Intel 64 instruction set can be specified

in a similarly straightforward manner.

58

Chapter 3: Formal Affordance-based Models

of Reproduction

This chapter describes a formal approach to modelling reproduction, and formal meth-

ods for classification and refinement of reproduction models. The obstacles faced by

those seeking a rigorous definition of reproduction were explored by Nehaviv & Daut-

enhahn [108], in which they identified a number of recurring problems in this domain:

• Von Neumann required that non-trivial reproducing automata be capable of uni-

versal computation and construction [149]. However, a biological cell is a repro-

ducer that can be argued to have neither. Therefore, strictly formal definitions

of reproduction, such as von Neumann’s, can often contradict the intuition about

reproductive systems.

• Identifying reproduction is a direct result of observation, i.e., definitions of re-

production may vary with observer bias. This could conflict with an idealised

Platonic notion of the “logic of life”, i.e., some set of formal rules which all living

things must display.

• Many observed forms of reproduction include dissimilarity between parents and

offspring, and multiple parents. Many formal definitions of reproduction, such as

those by von Neumann, do not take these factors into consideration.

In this chapter we do not intend to establish a rigorous definition of reproduction

or life. Instead, we wish to establish a means for modelling behaviour which we have

already identified as being reproductive. We hope to demonstrate that such an abstract,

systems-based approach can be beneficial to our understanding of the nebulous concepts

of reproduction and life.

59

Chapter 3: Formal Affordance-based Models of Reproduction

3.1 Introduction

The classification of life, both natural and artificial, is relevant to several fields, includ-

ing artificial life, biology and computer virology. In order to develop a classification of

life forms, one must first determine what constitutes the class of living things. Defining

the boundary between animate and inanimate often gives false positives and negatives.

Reproduction, on the other hand, is comparatively simple to define, and is an essential

characteristic in most definitions of what it means to be alive (see, e.g., [152, 130]).

A common informal definition of reproduction is that it is the act of producing off-

spring. Reproducers are then the actors which engage in reproduction. Of course, this

leaves the problem of what is meant by “producing offspring”, but as it is partly the

intention of this chapter to illuminate this problem, we shall ignore this problem until

Section 3.3. Similar terms to “reproduction” exist in the literature, including “pro-

duction”, “self-production”, “self-reproduction”, “replication” and “self-replication”.

Some of these terms are used to distinguish between unaided and aided reproduction,

however, we take “reproducer” (and consequently, “reproduction”) to mean any actor

which engages in an act of reproduction, regardless of its level of involvement in the

reproductive process.

In the literature there are clear and paradigmatic examples of reproducers: bio-

logical organisms and the genes that control them [36], von Neumann’s reproducing

automaton [149], computer viruses [31] and other forms of reproducing malware [43],

and so forth. However, there are other examples that stretch intuitive definitions of

reproduction: photocopies [71], gliders in cellular automata [51], seeding crystals, fixed

points of functions, or even a pen on a desk which, in being a static object, “reproduces”

from one instant to the next thanks to the physical laws of the Universe.

An important distinction between reproduction systems, that might help to distin-

guish between paradigmatic and “rogue” examples, is whether the reproducer appears

to rely on external agency, or not. For example, biological viruses are often argued to

be on the boundary between animate and inanimate [148] — perhaps this is partly a re-

sult of the fact that their reproductive process involves the “hijack” of the reproductive

process of a host cell.

3.1.1 The Theory of Affordances

Gibson’s theory of affordances describes the functional relationships between an animal

and its environment [55]. For an animal, an affordance is an “opportunity for action.”

For example, a piece of food affords an animal nourishment, a tree affords it the ability

to climb to safety, and a cave affords shelter. We use affordances to form a classifica-

60

3.1 Introduction

tion of reproducers based on the functionality that they afford to themselves and the

functionality that their environment affords them, with respect to reproduction. Gib-

son also describes a niche in an environment, into which an organism fits, as a “set of

affordances.” Therefore, in this chapter we categorise different reproducers according

to the sets of affordances corresponding to their reproductive niches.

Here we use “affordance” metaphorically; we apply it to reproducers rather than

animals, replacing “animal” with “reproducer” in Gibson’s original definition. If we

allow this slight expansion of the definition of the word, this affordance-based ontology

can afford us an intuitive and novel way of approaching the classification of reproducers.

For historical reasons “affordance” has come to mean “perceived affordance” in the

domain of human–computer interaction [144]. It is important to note that apart from

the slight expansion of the definition that we mention above, we take “affordance” to

mean “opportunity for action”, as in the original definition given by Gibson.

3.1.2 Structure of the Chapter

The rest of this chapter is devoted to the demonstration of the applicability of the

affordance metaphor described above to the problem of reproduction modelling, clas-

sification and refinement. Gibson presented the theory of affordances as an “ecological

theory of perception”, in which the relationship between an organism and its envi-

ronment could be described in terms of the relationship between the organism and

other entities within its ecology which afford some action. We could perhaps describe

our approach to reproduction modelling and classification based on affordances as an

ecological theory of reproduction.

In Section 3.2 we give an informal introduction to the application of the affordance

metaphor to reproduction through a classification of reproduction into four main types,

which we call Types I, II, III, and IV. These classes are based on predicates concern-

ing whether the sets of actions corresponding to the self-description and reproduction

mechanism of the reproducer are assisted by entities other than the reproducer, or not.

We show how this approach can be used to classify trivial and non-trivial reproducers

differently. However, the informality of this approach leads to a number of unanswered

questions, which in Section 3.3 motivates the formal approach to reproduction mod-

elling and classification.

In Section 3.4 we give formal definitions of our formal models of reproduction. We

describe how affordance-based reproduction models can be classified as unassisted or

assisted, trivial or non-trivial. In order to relate different reproduction models, we

describe a formal notion of refinement, in which one model can be refined to another.

In Section 3.5 we prove that all reproduction models, both unassisted and assisted,

61

Chapter 3: Formal Affordance-based Models of Reproduction

have a related model that has the opposite classification; these are presented as the

Unassisted and Assisted Reproduction Theorems, respectively. We prove that the re-

production model space is structured, as non-trivial reproduction models cannot be

refinements of trivial models, and trivial and assisted reproduction models cannot be

refined to trivial and unassisted reproduction models. We generalise the approach from

Section 3.2, based on notions of affordance of the self-description and reproduction

mechanism, in terms of aspects, and prove that the class Type I is equivalent to the

class of unassisted reproduction models. At every stage we illustrate our approach

with worked examples, in which reproduction models of reproducers from biology and

computer virology are defined, refined and classified. Then, in Section 3.6 we demon-

strate the application of affordance-based reproduction models and the Unassisted and

Assisted Theorems to examples of reproduction from artificial life.

In Section 3.7 we summarise our work, and explain how the questions raised in

Section 3.2 have been answered by formal affordance-based reproduction models. We

describe how our work compares with similar work in mathematics, artificial life and

theoretical biology, and based on this, give a critical appraisal of the work described in

this chapter.

3.2 One Possible Classification Scheme

One of the earliest formal analyses of reproduction was given by von Neumann [149].

One of the aims of his work was to prove by construction the existence of a formalised

automaton capable of reproduction (see Figure 1.2). Von Neumann split his automaton

into two separate parts: a self-description stored on a tape (analogous to a Turing

machine tape), which was passed as input to a constructor capable of fabricating any

configuration of cells within the cellular automaton in which the reproducing automaton

existed. This constructor was therefore a universal constructor; “universal” having

an analogous meaning to “universal” Turing machines. Von Neumann’s reproducing

automaton was highly complex and based on a complex cellular automaton, but even

the subsequent, and much more simple reproducers such as Langton’s loops [89] still

retain an architecture based on a self-description and reproductive mechanism.

Affordance theory lets us talk about a particular act by an actor within an envi-

ronment being attributable in some way to some other actor. Therefore, given the acts

corresponding to the acquisition of the self-description, and the use of it by the repro-

ductive mechanism in order to complete the act of reproduction, it is possible to create

a classification based on whether these acts are are afforded by entities external to the

reproducer, or not. Since these acts seem essential to reproduction, it is reasonable to

62

3.2 One Possible Classification Scheme

classify reproducers according to this scheme.

Therefore, we will present a classification which is based upon this division of an act

of reproduction into self-description and reproductive mechanism phases. As well as

von Neumann’s reproducing automaton and Langton’s loop, this abstract architecture

is used by biological organisms, in the form of the genetic code (self-description) and

the complex biological machinery which translates this code into offspring (reproductive

mechanism). Biological viruses also use this architecture, although a significant part

of their reproductive mechanism is given by an external entity: whichever organism

the virus infects enables the reproduction of the virus, since viruses typically lack a

sufficient reproductive machinery in order to complete their reproductive process. Other

well-known reproducers such as Tierran organisms [118] generate a self-description by

self-analysis. Their self-descriptions are not encoded as is the case with a genome,

however the organisms still provide the description to themselves by their reproductive

behaviour. The organisms copy their self-description one byte at a time to create an

offspring, which constitutes the organism’s reproductive mechanism. Computer viruses

and other forms of reproducing malware can generate a self-description in a similar

way to the Tierran organisms (i.e., by self-analysis), or they can carry an encoded self-

description within their own code (e.g., the Zmorph virus described in Chapter 2). The

reproductive mechanism is then the algorithm which creates a copy (offspring) of the

virus based on the self-description. More “trivial” reproducers such as photocopies still

employ a self-description and reproductive mechanism in their reproductive processes,

although they are given by an external entity (the photocopier). Cellular automaton

gliders such as those seen in Conway’s Game of Life [51] can also be seen to have a

self-description and reproductive mechanism, although it is given to the reproducing

gliders by an external actor: the self-description is contained in the state of the cellular

automaton, and the reproductive mechanism is the state transition rule which creates

the offspring (to be contained in the successive state).

The first step in classification involves identifying the parts of the reproductive

process which correspond to the self-description and reproductive mechanism. Next

we must determine which actors assist in the acts of self-description and reproductive

mechanism. As we shall see in the forthcoming descriptions, definitions and examples,

if the reproducer is not assisted in its reproductive process, i.e., if it is not afforded its

self-description and reproductive mechanism by an external entity, then we classify it

as “Type I”. A reproducer which is afforded either its reproductive mechanism or its

self-description is either “Type II” or “Type III” respectively. A reproducer which is

afforded both the self-description and reproductive mechanism by an external entity is

“Type IV”.

63

Chapter 3: Formal Affordance-based Models of Reproduction

Therefore, we can form a two-dimensional classification, with a dichotomy on each

dimension. These four types are therefore the four corners of a reproducer classifi-

cation space, and reproducers (such as biological organisms, artificial organisms, and

computer viruses) occupy different points within this space depending on their repro-

ductive reliance on themselves and the external actors in their environment.

3.2.1 Type I Reproducers

Type I reproducers do not have any part of their reproductive process, either the self-

description or the reproductive mechanism, afforded to them by any other actor in the

reproductive system.

3.2.1.1 Example: von Neumann Reproducing Automaton

Von Neumann’s reproducing automaton (see Figure 1.2) was the first mathematical

model of a reproductive process. Von Neumann identified that reproduction is pos-

sible when the reproducer has a self-contained self-description, and a reproductive

machinery that interprets the self-description as a set of instructions for producing

an offspring [149]. From an abstract point of view, this is the same process that mi-

croorganisms (such as bacteria) undergo during reproduction, where the genome (qua

self-description) is interpreted by the reproductive machinery within the organism to

produce an offspring. We will call this mode of reproduction, in which the acts of self-

description acquisition and reproductive mechanism are not afforded by any actor other

than the reproducer itself, Type I. The von Neumann reproducer, which reproduces on

a cellular automaton grid, is completely self-reliant with respect to reproduction — the

self-description consists of a tape that is attached to the automaton, and the repro-

ductive mechanism of the automaton consists of the method by which the tape is read

and translated into a sequence of instructions, which are fed to the constructing arm

in order to construct the offspring.

3.2.1.2 Example: Langton’s Loop

Langton’s loops are reproducing patterns on a cellular automaton grid (see Figure 3.1).

They consist of an outer sheath which encapsulates a sequence of cells with various

states (a data signal), which effectively correspond to instructions to the construction

arm for building an offspring loop [89]. The self-description here is the data signal within

the sheath, and the reproduction mechanism is the means by which the instruction in

the self-description are “interpreted” by the constructing arm. Both the self-description

and reproductive mechanism are self-contained, and therefore this particular case of

64

3.2 One Possible Classification Scheme

(a) Langton’s loops. (b) Loops beget loops. (c) Game of Life
glider.

Figure 3.1: Reproduction in cellular automata. Figure 3.1(a) shows the arm extensions
that complete the reproductive process of Langton’s loops, and Figure 3.1(b) shows a
“colony” of loops generated by one initial loop. Figure 3.1(c) shows all five states of a
Conway’s Game of Life cellular automaton corresponding to the reproductive process
of a glider. Image sources: [5, 101].

reproduction belongs in Type I.

3.2.2 Type II Reproducers

A Type II reproducer differs from Type I in that its reproductive mechanism is afforded

by some actor, present in the reproducer’s environment, and which is separate from the

reproducer.

3.2.2.1 Example: Tape from von Neumann’s Reproducing Automaton

An example of a Type II reproducer would be the self-description input tape from von

Neumann’s reproducing automaton. This tape is has no construction abilities at all. If

it is to reproduce, it must be interpreted by a constructor present in its environment.

Therefore, the tape reproduces has a self-description, but lacks a reproductive mecha-

nism, which must be afforded by some separate actor in the tape’s environment. The

tape therefore qualifies as a Type II reproducer.

65

Chapter 3: Formal Affordance-based Models of Reproduction

Figure 3.2: The T4 bacteriophage virus. The legs of the T4 attach themselves to the
cell wall of a bacterium. Then, using the base plate and tail as an injection mechanism,
the genetic material in the head is transferred to the interior of the host cell, where it
hijacks the reproductive mechanism of the cell in order to reproduce. Image source: [77].

3.2.2.2 Example: T4 Bacteriophage

A T4 bacteriophage virus contains a self-description in the form of its genome, encoded

as DNA or RNA (see Figure 3.2). However, the virus requires the help of its host cell

in order to reproduce, and therefore we can say that the reproductive mechanism is

afforded to the virus by the host cell, which we present as a separate actor. Therefore,

the T4 bacteriophage is a Type II reproducer. (The reproductive behaviour of the T4

bacteriophage and its classification are presented in more detail in Section 3.4.)

3.2.2.3 Example: Source Code Computer Virus

Source code computer viruses carry around with them a copy of their own source

code [43]. When they find a compiler on a host system, they use the compiler to create

an offspring based on the source code. Therefore, source code viruses have their own

self-description (source code), but require the help of another actor (the compiler) for

the reproductive mechanism. Therefore, source code viruses can be classified as Type

II, and are distinguished from typical parasitic computer viruses, which would naturally

be classified as Type I.

3.2.3 Type III Reproducers

Type III reproducers differ from Type I reproducers in that their self-description is

afforded by some actor, which is present in the reproducer’s environment and is separate

from the reproducer.

66

3.2 One Possible Classification Scheme

3.2.3.1 Example: Compiler

A compiler is a constructor of programs, which takes as its input a sequence of sym-

bols in some programming language (i.e., source code), and produces as output some

program corresponding to the sequence of symbols given as input. A compiler can be

given its own source code (self-description) as input, and as a result it will create a

copy of itself based on these instructions. Therefore, the compiler can only reproduce

by being given its source code as input by the user. Therefore, we can say that the

user is an entity in the compiler’s environment which affords the self-description to the

compiler.

3.2.3.2 Example: Damaged Cell

It is difficult to think of a biological example approximating Type III reproduction.

However, we might imagine a cell that has been damaged so that it no longer contains

any genetic material. In order to complete its reproductive process, the cell requires

the help of some external entity that will provide a self-description. For example, one

could imagine some means by which a genome is inserted into the cell by a specially-

engineered virus. Therefore we can say that the virus affords the self-description to the

cell, and therefore the cell is a Type III reproducer.

3.2.4 Type IV Reproducers

Type IV reproducers are those that are afforded both their self-description and repro-

ductive mechanism by actor(s) in the reproducer’s environment, and which are separate

from the reproducer.

3.2.4.1 Example: Game of Life Gliders

Cellular automaton (CA) gliders in Conway’s Game of Life [51] are able to reproduce

trivially thanks to the transition rule of the CA. Here, the state of the CA at a particular

instant stores the glider’s description, and therefore acts as a self-description for the

glider. The reproductive mechanism is provided by the transition rule which maps

one state of the CA to the next, and causes the glider to reproduce to a new point

on the CA grid. Therefore a glider is a Type IV reproducer, as its self-description

and reproductive mechanism are both afforded by the cellular automaton in which the

glider resides.

67

Chapter 3: Formal Affordance-based Models of Reproduction

Figure 3.3: Informal reproducer classification based on affordances. Notions of “self-
description” and “reproductive mechanism” result in a two-dimensional classification,
with a dichotomy on each dimension.

3.2.4.2 Example: The Photocopy

The information stored in writing on a piece of paper is able to reproduce trivially in

an environment which contains a photocopier machine. A piece of paper is fed into the

photocopier, at which point it is scanned and a representation (digital or otherwise)

which captures the appearance of the piece of paper is created. This representation

is a self-description for the piece of paper. This representation is then fed to the

printer within the photocopier, which creates a facsimile of the original piece of paper

in the form of a photocopy. This printing process is the reproductive mechanism for

the writing on the paper. The photocopy is therefore afforded its self-description and

reproductive mechanism by the photocopier machine.

3.2.5 Questions about Affordance-based Classification

In this section we have seen how it is possible to classify reproducers informally using

affordance theory. However, there are several questions that have been raised. The

questions described in this subsection will be answered in Sections 3.3–3.5.

3.2.5.1 The Assisted Reproduction Conjecture

We showed that a glider within a cellular automaton can be classified as Type IV,

because its entire reproductive process is performed by the cellular automaton in which

it resides. Essentially, we are presenting the cellular automaton as an actor present in

the glider’s environment. Within cellular automata, the state of the automaton together

with the state transition system form the laws of the universe within which different

patterns can exhibit their behaviours. So, by taking the cellular automaton as an actor,

68

3.2 One Possible Classification Scheme

we have portrayed the underlying laws of the reproducer’s environment as an actor.

This is bound to result in classification as Type IV, as the self-description, reproductive

mechanism, and indeed, anything else which occurs within the cellular automaton must

happen as a result of the underlying laws of the environment. However, this raises a

question: can we portray the underlying laws of the environment as an actor for any

other reproducers, and therefore classify them as Type IV as well?

The answer would seem to be, “Yes.” For example, the von Neumann reproducing

automaton reproduces within a cellular automaton as well. If we portray the cellular

automaton as an actor within the environment of the reproducing automaton (as we

did with the glider), then it is rational to assume that every act within the cellular

automaton grid must be afforded by the cellular automaton, as these acts could not

take place without its presence. Therefore, the von Neumann reproducing automaton

is afforded its acts of self-description acquisition and reproductive mechanism by the

cellular automaton in which it resides, and therefore it must be a Type IV reproducer.

However, we have already classified it in Section 3.2.1.1 as a Type I reproducer. In

effect, by looking at the reproduction of the reproducing automaton in a different way,

we have caused its classification to be changed from Type I to Type IV. In principle,

it should be possible to take any non-Type IV reproducer and re-classify it as Type

IV by simply considering there to be some actor, which is responsible for reproductive

actions (and perhaps more). In the most extreme case, we can thing of this actor as

being a “god-like” presence within the reproductive system, responsible for everything

that happens within the system.

Based on the above, we can form the assisted reproduction conjecture: is it possible

to re-classify any unassisted reproducer as assisted?

3.2.5.2 The Unassisted Reproduction Conjecture

If it is possible to introduce an actor that takes responsibility for everything that hap-

pens during an act of reproduction, then could we also re-define the actors present

during reproduction so that the reproducer takes sole responsibility for the act of re-

production? In other words, could we “aggrandise” the reproducer so that it then

affords itself everything in its act of reproduction that was previously afforded to it by

some external entity?

Again, the answer would seem to be, “Yes”. Let us use the example of the cel-

lular automaton glider once again. In the Type IV classification of the glider, the

self-description and reproductive mechanism were afforded by the cellular automaton

to the glider. However, suppose we imagine a new actor, a conglomeration of the cel-

lular automaton plus the glider. This conglomeration is defined in such a way that

69

Chapter 3: Formal Affordance-based Models of Reproduction

everything that was previous afforded by the actors that make up the conglomerate to

another actor is now afforded by the conglomerate to that actor. In the first model the

cellular automaton afforded the reproductive acts of self-description acquisition and

reproductive mechanism to the glider, and therefore in the updated model, the con-

glomerate of the cellular automaton and the glider now affords these acts to the glider

— which is now a part of the conglomerate, and therefore these acts are now afforded by

the conglomerate to itself. Since there is no other actor within the system that affords

reproductive actions to the reproducer, we know that the conglomerate-reproducer is

classified as Type I1.

Based on the above, we can form the unassisted reproduction conjecture: is it

possible to re-classify any assisted reproducer as unassisted?

3.2.5.3 Varying Degrees of Assistance

Reproducers outside Type I necessarily lack some essential part(s) of their reproduction

mechanism: either the self-description, the reproductive mechanism, or both. These

lacking parts must be provided by an external entity. However, some reproducers

outside Type I may afford themselves an action which assists in the acquisition of a self-

description and/or a reproductive mechanism in order to complete their reproductive

process. For example, the T4 bacteriophage given in Section 3.2.2.2 has an injection

mechanism for inserting its genetic code into a host cell: its “legs” attach to the cell

that it will infect, and the virus penetrates the cell in order to inject its genetic code.

It is possible to imagine a T4 variant that is “legless”, that is, it is exactly the same

as a normal T4 bacteriophage except that it lacks an injection mechanism. However, the

T4 variant is still classified as Type II because it is afforded a reproduction mechanism

by the cell (assuming that the genetic code can somehow still enter the host cell), but

the self-description is not afforded by any other actor. However, there is clearly a

difference in the amount of assistance required by the T4 and its variant.

It is likely that there are many other examples of varying degrees of assistance,

e.g., different computer viruses that require the assistance of the operating system may

require varying degrees of assistance. How, then, can we specify or quantify this degree

of assistance in reproduction? Could different degrees of assistance be used to form

further sub-classes of Types II, III and IV?

1Of course, this assumes that the conglomerate of the cellular automaton and the glider is still
a reproducer. However, we know that this is the case, as the both the cellular automaton and the
glider are present at the start and end states of reproduction, and therefore we can say that they have
reproduced in some manner.

70

3.3 Towards Formal Reproduction Models

3.2.5.4 Other Means of Classifying Reproducers Using Affordances

So far we have only looked at the abstract acts of self-description acquisition and

reproductive mechanism as a means of classification by affordances. It is likely, however,

that there may be other acts with which we can classify reproducers. For example, we

could talk only about the overall act of reproduction (including both self-description

and reproductive mechanism phases), and whether it is afforded by an actor that is

separate from the reproducer, or not. Classification of this type would result in two

different classes of reproducer, one in which the reproducers require the assistance of

other actors in order to reproduce, and one in which they do not.

Other possible dimensions of affordance-based classification may be based on par-

ticular sub-classes of reproducer, e.g., computer viruses. We may wish to define an

abstract act corresponding to the payload of the computer virus, for example, or we

may wish to identify all of the acts (e.g., statements) of a computer virus that corre-

spond to a particular kind of statement, e.g., those which use operating system API

functions.

Clearly we should not limit affordance-based classification of reproducers to the

acts of self-description acquisition and reproductive mechanism. We could expand

affordance-based classification to include other acts, such as the payload of a computer

virus, but then we face the same problem should we wish to extend the classification

further. The best way of dealing with this, then, might be to separate the different

possible acts on which we base our classifications from the act of affordance-based clas-

sification itself. For instance, we could define a general way of defining a reproductive

act such as the self-description, and a general way of checking whether it is afforded

by some other actor to the reproducer, and combine the two (if we so wish) to create

a particular classification of the reproducer space. The challenge, then, is to find such

a method of generalised affordance-based classification of reproducers.

3.3 Towards Formal Reproduction Models

The discussion thus far has focused on the distinguishing characteristics of different

classes of reproduction. These characteristics were described in terms of the actions

afforded by entities to other entities. The identification of the entities and actions

involved in a process, and the allocation of affordances among these entities, depends

upon the level of abstraction at which the process is viewed: in other words, what we

are characterising is not so much reproduction itself, as models of reproduction.

In Section 3.2.5 we described four issues that were raised by our informal reproduc-

tion classification. In order to answer these questions, in the next section we introduce

71

Chapter 3: Formal Affordance-based Models of Reproduction

formal notions of reproduction and classification, designed to capture formally the no-

tions of entities, assistance and affordance which we have so far used only informally.

We start by re-formulating the unassisted and assisted reproduction conjectures as

formal statements, which in Section 3.5 we prove to be true. The third question, on

how we can capture the varying degrees of assistance, is answered in the formulation

of reproduction models in Section 3.4 in which different actions within the act of re-

production are individually identified as being afforded by some set of entities. The

final question, on whether there are other abstract actions for classifying reproduc-

ers than self-description and reproductive mechanism, is answered in Section 3.5.3 by

generalising this kind of classification using “aspects”.

3.4 Formal Models of Reproduction

Our goal is to classify and study the relationships between models of reproductive

processes in a rigorous way. In this section we specify precisely what we mean by a

model of a reproductive process: on the one hand, we want our notion of model to be

general enough to cover as many examples as possible, while on the other hand, we

want the notion to have enough structure to allow us to capture relevant similarities

and differences between specific models. Since any model of reproduction necessarily

identifies some thing that reproduces, it seems reasonable to take an individual-based

approach to modelling reproduction, and we will assume that reproductive models

identify a collection of individuals that play some role in the reproductive process, and

that the reproducer itself is a particular individual in this collection. We also assume

that the reproductive model specifies a state space and the events that occur to move

from one state to another.

A state space together with events or “actions” that move the system from one

state to another form a labelled transition system, which consists precisely of a set S

of states, a set A of actions, and a ternary relation 7−→ ⊆ S×A×S specifying the

transitions between states. Given such a labelled transition system, we usually write

s
a

7−→ s′ instead of (s, a, s′) ∈ 7−→, to indicate that action a may move the system from

state s to state s′. As an example, consider the life cycle of a bacteriophage virus, which

consists of five stages: (i) attachment of the virus to the host cell; (ii) introduction of

the virus’s genome to the interior of the cell; (iii) synthesis of new virus parts; (iv)

maturation of these parts into mature offspring; and (v) release of these offspring back

in the environment. At this schematic level, there are five actions: A = {a, i, s,m, r},

and the state space has six states: S = {s1, s2, s3, s4, s5, s6}, where s1 represents the

initial state before the bacteriophage attaches to the cell, s2 represents the state after

72

3.4 Formal Models of Reproduction

attachment, and so forth. The labelled transition system as a whole can be pictured

thus:

s1
a

7−→ s2
i

7−→ s3
s

7−→ s4
m
7−→ s5

r
7−→ s6 (3.1)

In this schematic model of the bacteriophage, we might posit just two entities: the cell,

which is present in all states except the final state, and the bacteriophage, which, as

the reproducer, is present in at least the first state s1, and final states s5 and s6. This

gives us a very simple model of bacteriophage reproduction, in which we identify the

bacteriophage with its own offspring. Note that Cohen [32] adopts such an identification

in modelling computer viruses that may change their source code from generation to

generation, introducing the terminology “viral set” for the set of all instances of the

virus code that might be so generated. (We might say that our approach identifies

entities modulo “self sets.”) We might take an even more abstract view of identity,

and identify the bacteriophage with its genome, in which case we would have a model

where the bacteriophage is present in all states.

This very abstract and schematic model of bacteriophage reproduction gives an

example of

Definition 6. A basic reproduction model is a tuple

(S,A, 7−→,Ent , r, ε, p) ,

where

• (S,A, 7−→) is a labelled transition system;

• Ent is a set of “entities” with r ∈ Ent the particular entity that reproduces in the

model;

• ε ⊆ Ent × S is a binary relation, with e ε s indicating that entity e is present in

the state s;

• p is a path through the transition system representing the reproduction of r, i.e.,

p consists of a sequence s0
a17−→ s1

a27−→ . . .
an7−→ sn with si−1

ai7−→ si for 0 < i ≤ n,

and with r ε s0 and r ε sn.

The last item in this definition states that there is at least one path through the

transition system that shows that the reproducer does actually reproduce. In the

bacteriophage example, the path is the entire system, as pictured in (3.1).

The model of bacteriophage reproduction described above is very much idealised,

and schematic insofar as the states are just abstract labels for idealised stages in the life

73

Chapter 3: Formal Affordance-based Models of Reproduction

cycle of a prototypical bacteriophage. In this regard, it is very similar to the diagrams

that can be found in introductory textbooks on virology. We shall present more concrete

models later on, but even at this schematic level of abstraction, we can see that the

bacteriophage’s life cycle involves an essential interaction between the bacteriophage

and a — similarly prototypical — cell. Indeed, it is clear that the bacteriophage requires

a cell for all stages in its life cycle, placing it at one end of a spectrum of reliance

upon external agency; reproducers at the other end of the spectrum are those that are

able to reproduce without the help of other entities: these might include single-celled

organisms, or von Neumann’s reproducing automaton, for example.

In order to capture a notion of assistance within our models, whereby certain actions

happen as a result of the presence of one or more entities, we postulate a function Aff

that assigns to any action a the set of entities, Aff (a), that mutually afford the action

a, i.e., those entities without whose presence a could not be performed. We make this

formal in the following

Definition 7. An affordance-based reproduction model is a tuple

(S,A, 7−→,Ent , r, ε, p,Aff) ,

where (S,A, 7−→,Ent , r, ε, p) is a basic reproduction model, and

Aff : A→ P(Ent)

such that, for all states s, if a is possible in s (i.e., s
a

7−→ s′ for some state s′), then

e ε s for all e in Aff (a).

For example, in our model of the bacteriophage life cycle, given the set of entities

Ent = {b, c}, with b the bacteriophage, which is present in all states, and c the cell,

present in all states except s6, we might set

Aff (a) = {b, c}

for all actions a. We could read this as saying that all actions are afforded by the cell to

the bacteriophage, or that all actions require both the cell and the bacteriophage to be

present. Note, however, that this is simply one way of modelling the bacteriophage’s

life cycle, and so depends entirely upon the intentions of the modeller. It would be just

as acceptable, on a formal level, to set

Aff (a) = Aff (i) = Aff (r) = {b, c}

Aff (s) = Aff (m) = {c}

74

3.4 Formal Models of Reproduction

which would imply that only the cell is necessary for synthesis and maturation. Yet

again, we might set

Aff (a) = {b}

for all actions a, stating that the bacteriophage relies only on itself for reproduction,

giving, once more, a different model to the previous ones, perhaps reflecting a modeller’s

assumption that, say, cells are a freely available resource.

We shall revisit in Section 3.4.2 the issue of different models of “the same” repro-

ductive process, but with the notion of affordance we now have sufficient theoretical

machinery in place to model a wide variety of reproductive systems, and turn now to

the question of classifying such systems according to their reliance on external agency.

3.4.1 Classifying Reproduction Models

An obvious next step is to classify reproduction models according to whether or not the

reproducer is assisted in its act of reproduction. We shall say that those reproduction

models in which reproduction is not assisted by any other entity are unassisted, and

those in which reproduction is assisted are, naturally, assisted.

In order to simplify the definition of assistance, it is useful to think of the set of all

entities which aid the act of reproduction. We call this set the ecology of a model.

Definition 8. The ecology of a model M , E(M), is the union of the sets Aff (ai) for

ai in the path p.

We can then classify a model M as assisted or unassisted, depending on the ecology

of M .

Definition 9. An affordance-based reproduction model M can be classified as unas-

sisted iff there is no entity e, different from the reproducer r, in E(M). Conversely, a

model M is assisted iff there is some entity e different from r in E(M).

As illustrated in this definition, for brevity we often refer to an affordance-based

reproductive model simply as “a model”.

As well as classifying models based on assistance, we can classify based on whether

the reproducer participates in its own reproduction or not. The idea of a reproducer

not participating in its own reproduction might seem paradoxical at first, but is quite

natural in some circumstances. For instance, a photocopy does little in the act of

its own reproduction. It is likely that many such “trivial” examples of reproduction

involve reproducers that do not seem to participate in their own reproduction, e.g.,

gliders within Conway’s Game of Life. We summarise this distinction in

75

Chapter 3: Formal Affordance-based Models of Reproduction

Definition 10. A model M is trivial iff the reproducer r /∈ E(M). Conversely, M is

non-trivial iff r ∈ E(M).

We now demonstrate how a reproduction model for a copier computer virus can be

defined and classified.

Example 5. The following copier computer virus reproduces when it is executed by the

Bourne Again Shell (“Bash”) interpreter in Unix:

cp $0 $0.copy

The command cp takes as arguments two filenames, and copies the contents of the first

file, if it exists, into the second file, which will be created if it does not already exist.

The expression $0 is a special variable that is set to the name of the shell script that is

currently running.

In general, for a computer virus, we would like to base a reproductive model on an

operational semantics [114] for the programming language in which the virus is written.

That is, the labelled transition system has programs as labels, and the states are those

of an abstract machine that executes the language. An operational semantics formally

specifies the transition relation s
p

7−→ s′ by specifying which states s′ may be reached by

executing program p in starting state s.

In this case, we can represent the state of a computer running the Bash interpreter

as a tuple FS | B | CS, where FS represents the filestore, B represents the state of the

Bash interpreter, and CS represents a sequence of shell script commands that are to be

executed. For the sake of simplicity, we will assume that the filestore is just a sequence

of shell scripts, and we will represent each script as [FH : CS], where FH is the name

(“file handle”) of the script and CS is the sequence of shell-script commands in the

script. The state of the Bash interpreter would consist of variable–value pairs for all

of Bash’s environmental variables; since for our example we are interested only in the

variable $0, we will represent the state of the interpreter simply as $0 : FH, where FH

is the value of the variable $0. As for the commands, we will restrict attention to names

of shell scripts and commands of the form cp E1 E2, where E1 and E2 are expressions.

Thus, for example,

[virus : cp $0 $0.copy] | [$0 : null] | virus

represents a state where the only script in the filestore is the copier virus, the variable

$0 has value null, and the command about to executed is a call of the shell script

virus.

We will not spell out the details of the operational semantics for this simplified

Bash interpreter here; the interested reader can find a formal description written in

76

3.4 Formal Models of Reproduction

the specification language Maude [105] in Appendix B. For our present purposes, it is

sufficient to note that the operational semantics permits the following path:

[virus : cp $0 $0.copy] | [$0 : null] | virus
get
7−→

[virus : cp $0 $0.copy] | [$0 : virus] | cp $0 $0.copy
subst
7−→

[virus : cp $0 $0.copy] | [$0 : virus] | cp virus virus.copy
cp
7−→

[virus.copy : cp $0 $0.copy] [virus : cp $0 $0.copy]

| [$0 : virus] |

which shows that executing the virus causes its code to be reproduced.

In this model we identify three entities: the copier computer virus (v), the reproducer

in this model; the string rewriting agent (sra), which rewrites $0 to the name of the

script currently executing; and the cp command, which creates the copy of the virus.

Therefore Ent = {v , sra, cp}. Since substitution for $0 and copying file contents are

basic functions of the Bash interpreter, we let sra and cp be present in all states —

this is a reasonable choice for our simplified operational semantics; in a more detailed

semantics, we might, for example, specify that cp is not present in certain “error”

states arising from hardware or software failures that make the filestore unavailable.

We further specify that v is present in all states where the command cp $0 $0.copy,

or the result of substituting for $0 in this, is present either in the filestore or as a

command about to be executed by the interpreter.

Thus far, we have defined a basic reproduction model; we make this an affordance-

based model by specifying:

Aff (subst) = {sra}

Aff (cp) = {cp}

Aff (get) = {v}

It is readily checked that these equations satisfy the constraint of Definition 7, and that

the result is a non-trivial assisted model.

Several variations on this model may be given by changing the definition of the

function Aff . For example, if one feels that substitution for $0 is a freely available

resource that can be taken for granted, one may set Aff (subst) = ∅. Similarly, one may

have Aff (cp) = ∅ if one feels that copying files may be taken for granted. Together,

these two changes would give a model in which the entities sra and cp may be considered

77

Chapter 3: Formal Affordance-based Models of Reproduction

surplus to requirements and dropped from the set Ent . This model would then be a

non-trivial unassisted model.

3.4.2 Refinement of Reproduction Models

It should be clear from the preceding examples that we are not classifying reproducers

per se; rather, we are classifying models of reproducers, and we allow for the possibility

that a reproductive process may be modelled in many different ways. It is possible that

this permissiveness might seem inappropriate. After all, it might be argued, the primary

goal of a model is verisimilitude: things are one way or another, and the obligation on

a model is to say which way things are; so if there are two different models of the same

thing, then at least one model is wrong.

Our view, which may show a bias towards practices in Computer Science, is that

it is often useful to allow different models of the same process, perhaps at different

levels of abstraction, or reflecting different states of understanding of the process being

modelled. In software engineering, for example, it is common to start with a very

abstract specification of a system, and repeatedly refine this by adding more details

and constraints, until a final, very concrete specification is reached. Each version of

the specification can be seen as a model of the not-yet-realised system, at varying

levels of abstraction. The important relationship between the different models is a

form of consistency: the more concrete models impose more constraints on admissible

behaviours, or every behaviour allowed by the concrete models is also allowed in the

more abstract models. In this section we present a notion of refinement for affordance-

based reproduction models that captures the idea that one model provides a more

concrete view of the same process modelled by another. We will then show that it is

possible to freely move between viewing a process as assisted or unassisted.

Consider the schematic model of a bacteriophage’s life cycle presented in Section 3.4;

the following gives a more concrete version of this life cycle.

Example 6. We use terms to represent individual cells, bacteriophages, and bacte-

riophage RNA. For example, we use b-rna to name a particular bacteriophage RNA

sequence, and write T4[b-rna] to denote an individual T4 bacteriophage with that se-

quence (we are not concerned with any specific mechanics of RNA reproduction in this

model, so we need do no more than name the RNA here). Similarly, we write Cell[]

for an individual cell, and we denote states where several individuals coexist by simply

juxtaposing the terms for the individuals; thus, for example,

Cell[] T4[b-rna] Cell[] T4[b-rna] T4[b-rna]

78

3.4 Formal Models of Reproduction

denotes a state containing two cells and three bacteriophages. We consider this state

to be equivalent to any permutation of its constituent entities. Technically, we mean

that juxtaposition is an associative and commutative operation; semantically, we think

of this state as a “soup” in which the constituent entities can “move around” in order

to interact with one another. We also allow a similar sort of soup to exist within a

cell’s membrane; for example,

Cell[b-rna T4[b-rna] b-rna b-rna]

denotes a single cell that contains three bacteriophage RNA strands, and one mature

bacteriophage.

Such a situation can come to pass by a bacteriophage attaching to a cell and injecting

its RNA. We write C-T for a cell C with attached bacteriophage T , and postulate two

rewrite rules that allow attachment and injection of RNA (we omit the labels of the

actions):

C T 7−→ C-T

Cell[S]-T4[R] 7−→ Cell[S R]

which say, respectively, that bacteriophage T can attach to cell C, and that when a

bacteriophage with RNA R is attached to a cell that contains “internal soup” S, the

RNA R can be injected into that internal soup. Similarly, we give rewrite rules that

allow bacteriophage RNA to be replicated inside a cell, and that allow bacteriophage

RNA to mature into T4 bacteriophages:

Cell[R S] 7−→ Cell[R S R]

Cell[b-rna S] 7−→ Cell[S T4[brna]]

Finally, in the life-cycle of the bacteriophage, we allow cells to rupture, releasing ma-

tured bacteriophages into the environment:

Cell[S] 7−→ S

Clearly, these five rewrite rules correspond to the five schematic stages of the bacte-

riophage life-cycle. Moreover, we can see these stages applied to individuals, as in the

following example:

T4[b-rna] Cell[] T4[b-rna]

7−→

T4[b-rna] Cell[]-T4[b-rna]

7−→

T4[b-rna] Cell[b-rna]

79

Chapter 3: Formal Affordance-based Models of Reproduction

7−→

T4[b-rna] Cell[b-rna b-rna]

7−→

T4[b-rna] Cell[b-rna b-rna]

7−→

T4[b-rna] Cell[T4[b-rna] b-rna]

7−→

T4[b-rna] T4[b-rna] b-rna

which shows a T4 bacteriophage attaching to a cell, injecting its RNA, that RNA being

copied, maturing, and then being released as the cell “ruptures” (albeit after minimal

reproduction and maturing of the T4 RNA).

The states of this model are the terms of sort “soup”, and the rewrite rules given

above determine the actions and transitions. We can postulate entities comprising a

cell, Cell, which is present in a state iff that state has a subterm of the form Cell[...],

and bacteriophages, present in a given state iff the RNA, b-rna occurs as a subterm.

Furthermore, we can specify that all the actions (attachment, injection, etc.) are af-

forded jointly by the cell and the bacteriophages (and hence this model is an assisted

reproduction model).

In order to relate this model (call it T4Cell) to the schematic model of Section 3.4,

note first that we can map states of that model to states of T4Cell as follows2:

s1 7→ f(s1) = Cell[] T4[b-rna]

s2 7→ f(s2) = Cell[]-T4[b-rna]

s3 7→ f(s3) = Cell[b-rna]

s4 7→ f(s4) = Cell[b-rna b-rna]

s5 7→ f(s5) = Cell[b-rna T4[b-rna]]

s6 7→ f(s6) = b-rna T4[b-rna]

This maps the path of the schematic model to the path of T4Cell; i.e., it preserves

transitions, which have the same actions in both models. The schematic model had

two entities, b and c, representing the bacteriophage and the cell, respectively. We can

map these to entities h(b) = T4[b-rna] and h(c) = Cell, respectively, noting that this

preserves occurrences in states: if e ε s, then h(e) ε f(s). Moreover, since all actions

are afforded jointly by the cell and the bacteriophage in both models, affordances are

2For the interested reader, Maude specifications of the schematic model of Section 3.4, as well as
the model T4Cell , can be found in Appendix C.

80

3.4 Formal Models of Reproduction

clearly preserved as well.

We generalise this example in

Definition 11. For basic reproduction models M = (SM , AM , 7−→M ,EntM , rM , εM , pM)

and N = (SN , AN , 7−→N ,EntN , rN , εN , pN), a refinement M −→ N is a triple of func-

tions (f, g, h), where f : SM → SN , g : AM → AN , and h : EntM → EntN such

that

1. s
a

7−→M s′ implies f(s)
g(a)
7−→N f(s′),

2. e εM s implies h(e) εN f(s), and

3. h(rM) = rN .

Moreover, if M and N are affordance-based models, then (f, g, h) : M −→ N is a

refinement iff, in addition, h(AffM (a)) ⊆ AffN (g(a)) for all actions a ∈ AM (note we

write h(X) for the set resulting from applying h to every element of the set X).

Intuitively, a refinement M −→ N indicates that M and N model the same process,

but N provides a more detailed or concrete model, i.e., N refines M . Since transitions,

occurrences and affordances are all preserved, all of the behaviour, entities, and affor-

dances described in M also occurs in N , although N may provide more states, actions,

and entities than figure in M .

Despite this intuitive image of a refinement as an inclusion of one model within

another, there are many interesting refinements where one or more of the component

functions is not injective. In particular, models may be refined by “amalgamating” two

or more entities. We will see in the following section that such refinements can move

freely between assisted and unassisted reproductive models.

Example 7. We give a refinement of the copier computer virus model Mv from Ex-

ample 5. Let Nv be as follows:

• SNv
, ANv

, 7−→Nv
, rNv

(= v) and pNv
are identical to those in Mv ;

• EntNv
= {v , sra+cp};

• AffNv
(subst) = AffNv

(cp) = {sra+cp}; and

• sra+cp εM ′
v
s iff sra εMv

s or cp εMv
s.

It is readily checked that the identity functions 1SMv
: SMv

→ SMv
and 1AMv

: AMv
→

AMv
, together with the function mapping v to v and both sra and cp to sra+cp, give a

refinement Mv −→ Nv . Note that in this case, both Mv and Nv are assisted reproductive

models.

81

Chapter 3: Formal Affordance-based Models of Reproduction

3.4.3 Allowed Refinements of Reproduction Models

The definitions of assistance and triviality given earlier are independent dichotomies,

meaning that we can divide the space of reproduction models into four disjoint parts,

depending on the assistance and triviality of a reproduction model. It is interesting

to note that refinement between these four parts is limited in certain directions, which

implies a structure of the space of reproduction models. Firstly, there are no refinements

from non-trivial models to trivial models.

Proposition 6. If M and N are models, and there is a refinement M −→ N , then M

being non-trivial implies that N is non-trivial.

Proof. If M is non-trivial then we know that rM ∈ E(M). By Definition 11, we know

that h(rM) = rN and h(AffM (a)) ⊆ AffN (g(a)). Therefore rN ∈ E(N) and N is

non-trivial, as desired.

Secondly, there are no refinements to trivial, unassisted models.

Proposition 7. For all trivial, unassisted affordance based models, N , there is no

refinement M −→ N , where M is trivial and assisted.

Proof. Proof is by contradiction. Suppose that a refinement M −→ N exists. Since

M is assisted, then by Definition 9 there must be some entity x ∈ EntM , different

from the reproducer r, such that x ∈ AffM (b) for some action b in the path. By

Definition 11 we know that h(AffM (b)) ⊆ AffN (g(b)) and therefore h(x) ∈ AffN (g(b)).

However, AffN (b′) = ∅ for all actions b′ in the path, because N is trivial and unassisted.

Therefore, there can be no such function h, and therefore the refinement cannot exist,

as desired.

It is straightforward to demonstrate that refinements are allowed in all other direc-

tions, and therefore these proofs are omitted. The resulting structure of the space of

reproduction models is summarised in Figure 3.4.

3.5 The Unassisted and Assisted Reproduction Theorems

In this section we show that the classification into assisted or unassisted models does

not reflect an intrinsic property of the process being modelled, but rather reflects the

decisions made in constructing a particular model. We show that every model can be

refined by an unassisted model, and, dually, every model refines an assisted model.

82

3.5 The Unassisted and Assisted Reproduction Theorems

Figure 3.4: Allowed refinements between classes of affordance-based models.

3.5.1 The Unassisted Reproduction Theorem

One potential application of refinement is to identify the entities that assist the repro-

ducer in the act of reproduction, and conglomerate them with the reproducer to form

a “super-entity”. Of course, the resulting aggrandised reproduction model will then be

an unassisted model irrespective of whether the original reproduction model was as-

sisted or unassisted. In the following Propositions 8–11, and culminating in Theorem 2,

we will show how for any reproduction model, M , there is a corresponding unassisted

reproduction model M# — in which states, actions, action successions, and the repro-

ducer’s path remain unchanged — for which there is a refinement arrow M −→ M#.

The first step is to define M# in

Definition 12. Given a reproduction model M = (S,A, 7−→,Ent , r, ε, p,Aff), we define

M# = (S,A, 7−→,Ent#, r, ε#, p,Aff #)

where

1. Ent# = (Ent\E(M)) ∪ {r};

2. r ε# s iff e ε s, for some entity e ∈ E(M) ∪ {r}; and for all e ∈ Ent\E(M),

e ε# s iff e ε s; and

3. Aff #(a) = h(Aff (a)), where h : Ent → Ent# maps c ∈ E(M) to r, otherwise

h(e) = e.

Proposition 8. For any model M , M# is an affordance-based reproduction model.

83

Chapter 3: Formal Affordance-based Models of Reproduction

Proof. By Definition 7, we require that for all e ∈ Aff #(a), and for all states s where a is

possible in s then e ε# s. Suppose that action a is possible in state s, and e ∈ Aff #(a).

By Definition 12(3), e = h(e0) for some e0 ∈ Ent , and because M is an affordance-based

reproduction model, it follows that e0 ε s. If e0 ∈ E(M), then e = h(e0) = r and e ε# s

by Definition 12(2); if e0 /∈ E(M), then e = h(e0) = e0 ε s and so e ε# s as desired.

Now that we have established that both M and M# are models, we must check

that M# is in fact unassisted.

Proposition 9. For any model M , M# is unassisted.

Proof. The only entities which afford reproductive actions (i.e., those in p) to r in M

are those in E(M). Therefore, for any ai in p, if e ∈ Aff #(ai), then e = h(c) for some

c ∈ E(M) and so e = r.

Next we show that M# refines M .

Proposition 10. For all models M , there is a refinement M −→M#.

Proof. The refinement M −→ M# consists of the triple (1S , 1A, h), where 1S and 1A

are identities on states and actions, and h : Ent → Ent# is as defined in Definition 12.

Clearly, transitions are preserved (Definition 11(1)), and preservation of occurrences

(Definition 11(2)) follows immediately from Definition 12(2), and we need show only

h(Aff (a)) ⊆ Aff #(a) for all actions a, but this is immediate from Definition 12(3).

This gives us our main result for this section:

Theorem 2 (Unassisted Reproduction Theorem). Every reproduction model can be

refined by an unassisted reproduction model.

In other words, for any reproduction model, be it assisted or not, there is another

model which captures the same reproductive process but with modified entities, which is

classified as unassisted. Therefore, all models of assisted reproduction can be refined so

that they instead capture unassisted reproduction. This tells us that apparent assisted

reproduction is simply a consequence of the way a particular reproductive process is

modelled, since it can also be modelled as unassisted reproduction.

In order to demonstrate Theorem 2, we give an example of a model M#
v that is a

refinement of the copier computer virus model Mv (cf. Examples 5 and 7), and is an

unassisted model.

Example 8. Let M#
v be constructed from the model Mv of Example 5, as in Defini-

tion 12. This gives us:

84

3.5 The Unassisted and Assisted Reproduction Theorems

• S
M

#
v

, A
M

#
v

, 7−→
M

#
v

, r
M

#
v

(= v) and p
M

#
v

are identical to those in Mv ;

• Ent
M

#
v

= {v};

• v ε
M

#
v

s for all s ∈ S; and

• Aff
M

#
v

(a) = {v} for all actions a.

The refinement Mv −→ M#
v consists of the identity functions on states and actions,

and the function that maps all entities to v.

If a model M is an unassisted model, then our construction of M# just yields the

original model M :

Proposition 11. If M is unassisted, then M = M#.

This is proved by inspection of Definition 12, noting that if M is unassisted, then

E(M) ⊆ {r}. A slightly stronger statement says that the construction of M# is the

smallest change to M that is needed to obtain an unassisted reproduction model. Con-

sider the situation in Figure 3.5, where the arrow along the top is the refinement of

Proposition 10. If there is some other unassisted model N that refines M , then it makes

M# M

N

γ

β α

Figure 3.5: Refinement arrows between M , M# and N .

a larger change than M# does, and it refines M# as well; moreover, it does so in a

unique way. This is stated formally in the following

Proposition 12. For all reproduction models M , M# is the least unassisted refinement

of M .

Proof. Suppose (αf , αg, αh) is a refinement of M by an unassisted reproduction model

N = (SN , AN , 7−→N ,EntN , rN , εN , pN ,AffN).

We show that there is a unique refinement β = (βf , βg, βh) : M# → N such that

α is the composition of γ and β, where γ = (1S , 1A, h) is the refinement M −→ M#

of Proposition 10. Since γ is the identity on states and actions, we clearly require

βf = αf and βg = αg, and all that remains is to define βh. By the definition of

refinement, we require βh(rM#) = rN , and for all other e ∈ Ent# (i.e., e ∈ Ent\E(M)),

we set βh(e) = αh(e). This clearly satisfies the uniqueness constraint on β, and we

85

Chapter 3: Formal Affordance-based Models of Reproduction

need only show that β does indeed exist; i.e., we need to show that αh(e) = rN for

all e ∈ E(M). If e ∈ E(M), then there is some ai in pM with e ∈ AffM (ai), and so

αh(e) ∈ AffN (αg(ai)), but since N is unassisted, this must mean that αh(e) = rN , as

desired.

3.5.2 The Assisted Reproduction Theorem

From Theorem 2 we know that all reproduction models can be refined by an unas-

sisted reproduction model, and therefore all reproduction models can be viewed as

unassisted. In this subsection we show that the converse is also possible, that for all

reproduction models, there is a corresponding assisted reproduction model. We define

this corresponding model in

Definition 13. Given a reproduction model, M = (S,A, 7−→,Ent , r, ε, p,Aff), we de-

fine

M# = (S,A, 7−→,Ent#, r, ε#, p,Aff#)

where

• Ent# = Ent ∪ {G};

• Aff#(a) = Aff (a) if r /∈ Aff (a), and Aff#(a) = Aff (a)\{r}∪{G} if r ∈ AffM (a);

• for all states s, G ε# s iff r ε s;

• e ε# s iff e ε s for all entities e 6= G.

The model M# introduces a new entity, G, and ascribes to it all the actions afforded

by r in M . We might think of this new entity as the “Laws of Nature”, which makes

possible all of the actions afforded by the reproducer (in M); such a change of viewpoint

might be seen in viewing, on the one hand, organisms as actively reproducing through

their own actions, and viewing them, on the other hand, merely as phenotypes of genes

that persist, or not, under the action of natural selection. Another example of such a

change of viewpoint would be to view reproducers such as Langton’s loops [89] as, on

the one hand, reproducing by means of extending a process that loops back on itself,

or, on the other hand, as just phenomena that emerge from the iterative application

of the evolution rule of the cellular-automata grid in which the loops are realised. In

this example, the entity G is the evolution rule; in the previous example, it is natural

selection. We might say that the Unassisted Reproduction Theorem of the previous

section represents an ecological view of reproduction, in which a number of separate

entities that collaborate in a process of reproduction can be viewed as a entity in itself,

whereas the construction of this section represents a reductionistic approach, in which

86

3.5 The Unassisted and Assisted Reproduction Theorems

any behaviour (though especially reproduction for our purposes) can be viewed as a

manifestation of physical or computational laws.

Proposition 13. For all reproduction models M , M# is a reproduction model and

there is a refinement M# −→M .

Proof. It is clear from the construction that M# is an affordance-based reproduction

model whenever M is. The refinement M# −→ M consists of the triple (1S , 1A, h),

where 1S and 1A are identities, and h is defined as follows: h(G) = r, and h(e) = e

for e ∈ Ent . We must check that the conditions from Definition 11 hold. Condition

(1) holds trivially, because S, A and 7−→ are identical in M and M#. Condition

(2) holds by construction of M#, as does condition (3). The final condition, that

h(Aff#(a)) ⊆ Aff (a), holds because Aff# replaces r by G and h maps G to r.

The Assisted Reproduction Theorem follows from this, with one proviso: that the

original model M is non-trivial (cf. Definition 7).

Theorem 3 (Assisted Reproduction Theorem). Every non-trivial reproduction model

M refines an assisted reproduction model.

Proof. This follows directly from Proposition 13, noting that if r ∈ Aff (ai), then

Aff#(ai) = Aff (ai) \ {r} ∪ {G}, so r 6= G ∈ Aff#(ai), and therefore M# is an as-

sisted model.

The requirement that M be non-trivial is from Definition 13, as M# is assisted if M is

non-trivial.

We illustrate this construction by revisiting the copier computer virus Mv of Ex-

ample 5, an assisted reproducer that was rendered unassisted in Example 8, giving the

model M#
v . We now apply the Assisted Reproduction Theorem to give

Example 9. Let (M#
v)# be constructed from M#

v following Definition 13. We have

• Ent
(M#

v)#
= {v , G};

• G ε
(M#

v)#
s for all s ∈ S; and

• Aff
(M#

v)#
(a) = {G} for all actions a.

In other words, G is omnipresent and omnipotent in that it alone affords all the actions

of the copier virus’s reproductive cycle.

These examples show that our approach does not say that assisted and unassisted

models are the same thing: the constructions of Definitions 12 and 13 are not bijections,

87

Chapter 3: Formal Affordance-based Models of Reproduction

as Mv and M# are different. What our approach does say is that a reproductive process

may be viewed qualitatively in different ways. Moreover, the notion of refinement

serves to rank these qualitatively different approaches to modelling the same process:

ecological approaches are more refined than reductionistic approaches, or, following

Example 6, more schematic.

3.5.3 Further Classification Using Aspects

In Section 3.2, we classified reproducers into four categories, which we called Types I, II,

III, and IV. These categories were based on identifying which actions in the model were

concerned with obtaining a self-description (SD) of the reproducer, and which actions

were concerned with the reproductive machinery (RM) for constructing a copy of the

reproducer. Models where all actions in both groups were unassisted were categorised

as Type I, which in Section 3.4 we simply called “unassisted”; the remaining types

subdivide the assisted class of models. The case where SD was unassisted and RM was

assisted we called Type II; the case where SD was assisted and RM was unassisted we

called Type III; and the case where both were assisted we called Type IV.

As we argued in Section 3.2, a self-description and its use in the construction of a

copy of the reproducer plays a central role in a great number of reproduction models.

However, there may be applications where other aspects of the reproductive process

play a more prominent role. For example, many computer viruses contain code that is

designed to prevent the infection of already-infected files, or code that is intended to

avoid detection by — or even to actively attack — anti-virus software, and the ecology

or dependencies of these code fragments are therefore of interest to the producers of

anti-virus software. As another example, in biological organisms, sexual reproduction,

random mutations in DNA, and the interactions of the organism itself with its envi-

ronment, including, for example, predators or potential mates, are the aspects of the

reproductive cycle where natural selection plays a role: it would be hard to explain a

peacock’s tail without a notion of mate-selection. In this section we shall generalise

this mode of classification to arbitrary predicates on the actions in the reproduction

model, which we call aspects.

Formally, an aspect is just a name, such as “self-description”, “detection-avoidance”,

or “mate-selection”. As such, it has no intrinsic formal meaning, and its application

to reproduction models depends on the intentions of the modeller. It applies to a

particular model as a predicate on the actions of that model, saying which actions are

concerned with that aspect. For example, the actions of the T4 bacteriophage life-cycle

(see Section 3.4) that are concerned with reproductive machinery would be synthesis of

the bacteriophage RNA and its maturation. The actions of the copier computer virus

88

3.5 The Unassisted and Assisted Reproduction Theorems

(see Example 5) concerned with the same aspect would be the call of the cp function;

the actions in this model concerned with obtaining a self-description would be the

substitution of the virus’s file name for the variable $0 — but again, there is freedom

for interpretation on the part of the modeller: it would be perfectly acceptable to also

include the call of cp as concerned with obtaining a self-description, which would be

reasonable, as this is where the actual viral code is accessed in the file store.

Of course, we may be interested in studying reproduction models with regard to a

particular aspect, or with regard to several.

Definition 14. Given an aspect α, an α-model consists of an affordance-based model

M together with a predicate Mα on the actions of M . If C is a set of aspects, a C-model

is a model with a predicate Mα for each α ∈ C.

We can relativise the model theory of the preceding sections to aspects or sets of

aspects.

Definition 15. For aspect α and α-model M , we define the α-ecology of M , Eα(M),

to be the union of all the sets AffM (ai) for ai in the path of M for which Mα holds:

i.e., all entities that afford α-actions in M .

Definition 16. We say M is α-unassisted iff Eα(M) ⊆ {rM}, and M is α-assisted

iff Eα(M) contains some entity other than rM . Similarly, M is C-unassisted iff it is

α-unassisted for each α ∈ C, and C-assisted iff it is α-assisted for some α ∈ C.

Moreover, it is clear that the constructions of the Assisted and Unassisted Repro-

duction Theorems can be relativised to arbitrary sets of aspects. Thus, for any α-model

M , there is an α-unassisted model that refines M , and (for non-trivial M) an α-assisted

model that is refined by M .

Any unassisted model will be α-unassisted, for any aspect α, and in this sense,

aspects serve to subdivide the space of assisted models. The basic distinction between

assisted and unassisted could be viewed as arising from an aspect that holds for all

actions in a reproduction model’s path, but in general, n aspects give 2n categories of

assisted reproduction. For example the four-fold categorisation (Types I–IV) described

above arises from the two aspects of self-description and reproductive-machinery. Con-

versely, “enough” aspects serve to recapture the absolute notion of “unassisted”:

Proposition 14. If M is C-unassisted and the set of actions in pM is covered by the

aspects in C, i.e., each ai in pM satisfies some Mα for α ∈ C, then M is unassisted.

Proof. For any ai in the path of M , there is at least one aspect α ∈ C for which Mα

holds, and since M is α-unassisted, AffM (ai) ⊆ {rM}, and so E(M) ⊆ {rM}.

89

Chapter 3: Formal Affordance-based Models of Reproduction

In summary, aspects provide a generalisation of our basic distinction between as-

sisted and unassisted models of reproduction, and allows finer-grained distinctions be-

tween assisted models.

3.6 Further Examples

In Section 3.4 we showed the applicability of affordance-based reproduction models to

biological life forms (e.g., bacteriophage viruses) and computer viruses. In Chapter 4 we

will explore the latter in much more detail. However it is useful to give explicit details

about the application of affordance-based reproduction models to artificial life forms,

e.g., the paradigmatic examples of Langton’s loop, or the case of gliders in Conway’s

Game of Life. In the examples below we will demonstrate how models of artificial

life forms at different levels of abstraction can be related using refinements, and how

applications of the Unassisted and Assisted Theorems might aid in our understanding

of artificial life.

3.6.1 Langton’s Loop

Langton’s loops reproduce on a two-dimensional cellular automaton grid. A loop con-

sists of an outer “sheath” which contains the self-description: a series of symbols en-

coded in the states of the sheathed cells. The self-description causes an “arm” to be

extended from one corner of the loop, which then turns perpendicularly, before repeat-

ing the process a further three times until a child loop is constructed after 151 time

steps [89], as in Figure 3.1(a).

There are a number of ways in which the reproductive process of the loop could be

modelled. For example, we could define the the labelled transition system so that it

would model explicitly the states of the cellular automaton grid, e.g.,

s1
a17−→ s2

a27−→ . . .
a1517−→ s152, (3.2)

or we could define a more abstract labelled transition system modelling abstract

actions which correspond to the beginning, middle and end of the act of reproduction

(see Figure 3.6).

s s′ s′′
b

m

e

Figure 3.6: A possible labelled transition system for a model of Langton’s loop.

90

3.6 Further Examples

In the next example we will show that there is a refinement of an affordance-based

model with Equation 3.2 as its labelled transition system to another affordance-based

model with Figure 3.6 as its labelled transition system.

Example 10. Let L be a model in which SL, AL and 7−→L and the path pL are defined

by Figure 3.6. Let the set of entities EntL = {L, t} in which L is Langton’s loop (and

also the reproducer in this model) and t is the transition rule of the cellular automaton

that affords reproductive actions to L, i.e., AffL(a) = {L, t} for all actions a. We know

that L εL s and L εL s
′′ by Definition 6, and t εL s and t εL s

′ by Definition 7.

Then, let L′ be a model in which SL′, AL′ and 7−→L′ and the path pL′ are defined by

(3.2). Let the set of entities EntL′ = EntL, and let all reproductive actions be afforded

by the transition rule, i.e., AffL′(a) = {L, t} for all actions a. We know that L εL′ s1

and L εL′ s152 by Definition 6, and we set t εL′ si for 1 ≤ i ≤ 151.

Now we will define three functions refining L′ to L. Let f : SL′ → SL be defined as

follows:

f(s1) = s,

f(si) = s′ for 2 ≤ i ≤ 151, and

f(s152) = s′′.

Let g : A′
L → AL be defined as follows:

g(a1) = b,

g(ai) = m for 2 ≤ i ≤ 150, and

g(a151) = e.

Since we are specifying a refinement relating two models that differ only at their ab-

straction level, we set h : EntL′ → EntL as an identity function.

In order to check that there is a refinement L′ −→ L, we must check that the condi-

tions from Definition 11 hold. The first condition, that s
a

7−→L′ s′ implies f(s)
g(a)
7−→L f(s′)

is readily checked exhaustively:

s1
a17−→L′ s2 ⇒ s

b
7−→L s

′

s2
a27−→L′ s3 ⇒ s′

m
7−→L s

′

...

s150
a1507−→L′ s151 ⇒ s′

m
7−→L s

′

s151
a1517−→L′ s152 ⇒ s′

e
7−→L s

′′

91

Chapter 3: Formal Affordance-based Models of Reproduction

Definition 11(2), that e εL′ s implies h(e) εL f(s) is also easily checked. Since h is an

identity function, we need only show that the following are true:

L εL′ s1 ⇒ L εL s

L εL′ s152 ⇒ L εL s
′′

t εL′ s1 ⇒ t εL s

t εL′ si ⇒ t εL s
′ for 2 ≤ i ≤ 151

It is simple to show that Definition 11(3) holds, as h is an identity function. Finally,

the condition on affordance-based models that h(AffL′(a)) ⊆ AffL(g(a)) for all actions

a ∈ AL′ also holds, since h is an identity function and AffL′(a) = AffL(a′) = {L, t} for

all actions a ∈ AL′ and a′ ∈ AL.

Therefore L′ −→ L for the functions (f, g, h) defined above.

We know by Definition 9 that L is an assisted reproduction model, since there is

an action a in the path pL for which there is an entity other than L in AffL(a). In the

next example we will show an application of the Unassisted Reproduction Theorem, in

which we construct a model L# that is a refinement of L but is classified as unassisted.

Example 11. We begin by constructing a tuple L# from L according to the construction

of M# from M in Definition 12. Therefore Ent#L = EntL \ E(L) ∪ {L} = {L} since

E(L) = {L, t} and L is the reproducer in model L. Since L εL s, L εL s′′, t εL s,

t εL s′ and r, t ∈ E(L), by Definition 12 we know that L ε#L s, L ε#L s′ and L ε#L s′′.

Also, by Definition 12 we know that Aff#
L (a) = {L} for all actions a ∈ A#

L , since

AffL(a) = {L, t} and h(L) = h(t) = L. By Theorem 2 we know that L# is an unassisted

reproduction model, and that there is a refinement L −→ L#.

Looking at the definition of L# above we can see that the Unassisted Reproduction

Theorem allows for the refinement of L to a reproduction model that is classified as

unassisted, through effectively conglomerating the entities L and t into a single entity

(also named L) in L# that is present in all states in which L and t were present, and

affords all actions that were afforded by L or t. Therefore the refinements given by

the Unassisted Reproduction Theorem effectively model the shift in observation of a

reproduction system from being assisted to being unassisted. By the Theorem, all

reproduction models have an unassisted refinement, which tells us that any model with

an assisted classification can be recast as an unassisted reproduction model through

the process described in Definition 12.

92

3.6 Further Examples

3.6.2 Conway’s Game of Life Gliders

Conway’s Game of Life, also known as “Life”, is a cellular automaton with a much

simpler transition rule than the cellular automaton for Langton’s loop [51]. Here we

will present an affordance-based model of a “glider” in Conway’s Game of Life. The

glider is a pattern within Life that reproduces over four steps (see Figure 3.1(c)), and

is a simple example of artificial life.

In Example 10 we constructed two different affordance-based reproduction models

of Langton’s loops, one of which modelled the states of the reproductive as being the

states of the cellular automaton grid, and the other modelled the reproductive path as

much more schematic and abstract, with three actions corresponding to the beginning,

the middle and the end of the act of reproduction. The glider is much simpler however,

and whilst a schematic model would be possible, it would be only slightly less abstract

than a concrete model in which the states of the model are the states of the cellular

automaton grid. We construct this concrete model as follows.

Example 12. Let H be an affordance-based model in which the states s1, . . . , s5 are

the five states of the cellular automaton grid corresponding to the reproduction process

(see Figure 3.1(c)), and the actions a1, . . . , a4 are the transition rule applications which

update these states, so that the labelled transition system (SH , AH , 7−→H) and path pH

are given by

s1
a17−→ s2

a27−→ . . .
a47−→ s5 .

The only entity present is the glider g which reproduces, and therefore EntH = {g} and

rH = g. We define every action in the reproduction process to be afforded by the glider

g, and so AffH(a) = {g} for all actions a in the path pH . By Definition 7 we know that

g εH si for 1 ≤ i ≤ 4, and by Definition 6 we know that g εH s5.

In Example 11 we demonstrated an application of the Unassisted Reproduction

Theorem to an affordance-based model of Langton’s loops. We wil now do the same

for the Assisted Reproduction Theorem and the Game of Life glider.

Example 13. We begin by constructing a tuple H# from H according to the construc-

tion of M# from M in Definition 13. Let SH#
= SH , AH#

= AH and 7−→H#
= 7−→H .

Then, EntH#
= EntH ∪ {G} = {g,G}, and since AffH(a) = {g} for all actions a in

the path pH we know that AffH#
(a) = {G} for all actions a in the path pH#

. Similarly,

G εH#
s for all states s ∈ SH#

since G εH s for all states s ∈ SH . By the Assisted

Reproduction Theorem we know that H# is an assisted reproduction model, and that

there is a refinement H# −→ H.

It is interesting to note that in the first affordance-based model H, the glider g is

93

Chapter 3: Formal Affordance-based Models of Reproduction

the only entity present, and the only entity that affords actions in the reproductive

process. However, the model H# contains two entities, one of which (G) takes over

the responsibilities of the reproducer, g. We can think of this new entity, G, as being

a “god-like” entity that takes responsibility for each action in the path afforded by

the reproducer. For example, in the context of cellular automata such as the Game of

Life, we can think of G as being the transition rule, and the refinement relationship

H# −→ H as a recognition of the different views of the glider’s reproduction: one in

which the transition rule plays a part, and one in which it does not.

3.7 Summary

We started the chapter with an informal classification of reproducers based on notions

of self-description and reproductive mechanism. Whilst this approach is useful3, it ap-

peared that there would be benefits from a full formal treatment of the classification.

In order to highlight this, we posed a number of questions concerning the inadequacy of

the informal classification in Section 3.2.5. The first two questions, which were conjec-

tures based on assisted and unassisted reproduction have been proven in the forms of

the Assisted and Unassisted Reproduction Theorems respectively. The third question,

on whether there is a way to model varying degrees of assistance, has been answered

in the formal definition of reproduction models, which permit different actions to be

attributed to different entities. The last question, on means of classifying reproduction

other than the self-description and reproduction mechanism, has been answered in the

formal definition of aspects, which allow us to define arbitrary predicates in order to

classify reproduction models.

In order to answer these questions, we have given the first full formal definition of

affordance-based reproduction modelling, classification and refinement. We have shown

that we can specify reproduction systems using models in which discrete-time processes

are modelled using labelled transition systems. We can define the entities present in

a model, and specify in which states they are present. When entities are present in a

state, they can afford actions which move that state to another state. We can divide

these models by classification as “unassisted” or “assisted” reproduction, the former

describing a state of affairs where no actions in the reproducer’s path are afforded by

entities other than the reproducer, and the latter describing there is at least one action

in the path that is afforded by an entity other than the reproducer.

We have proven the Unassisted Reproduction Theorem, which states that for every

reproduction model M , there is another model M# that is a refinement of M , and

3For instance, source code viruses can be distinguished from more conventional viruses using this
approach (see Section 3.2.2.3).

94

3.7 Summary

therefore preserves the structure of the reproduction model described, but guarantees

classification of M# as an unassisted reproduction model. We have also given the

converse to this, the Assisted Reproduction Theorem, which shows that for all non-

trivial reproduction models M there is another model M# of which M is a refinement.

These theorems show essentially that any reproduction system specified using a repro-

duction model, which is initially classified as assisted or unassisted, can be essentially

reclassified as the other through refinement.

In Section 3.2 we described how reproduction models could be classified according to

two separate dichotomies based on whether the actions corresponding to the reproduc-

tive mechanism and self-description of a reproductive process were afforded by entities

other than the reproducer, or not. In Section 3.5.3 we generalised classifications of this

sort using aspects: predicates on the actions in a reproduction model. An aspect, once

applied to a reproduction model, holds if and only if no external entities afford any

actions for which the aspect is true. In this way, a number n of aspects gives up to 2n

different classes of reproduction models.

We have shown how these reproduction models can be defined for both computer

viruses and biological viruses such as bacteriophages, and then classified and refined.

Biological viruses are interesting phenomena at the boundary of accepted definitions of

life [148], and computer viruses are a form of artificial life [135], and therefore we have

shown the applicability of our approach to real-life examples of reproduction.

In Section 3.6 we demonstrated that affordance-based reproduction models can be

applied to the modelling of reproduction in artificial life; that models of artificial life

forms at different levels of abstraction can be related using refinements of models; that

the conglomeration of entities can be related using an application of the Unassisted Re-

production Theorem; and that the inclusion of an entity that represents the underlying

“laws” of the universe, e.g., a cellular automaton transition rule, is accurately modelled

by an application of the Assisted Reproduction Theorem.

In the following section we give an overview of related work in the literature, in-

cluding formal and informal reproduction models and classifications. We follow this

with a comparison of the related work with our approach (as a critical appraisal of the

novel contribution presented in this chapter), and further discussions and conclusions

drawn from this contextual analysis.

3.7.1 Related Work

Reproduction is one of the fundamental characteristics of most definitions of life, and

as a result there is an extraordinary wealth of information in the literature concerning

reproduction. Indeed, reproduction is a central concept in biology, artificial life, com-

95

Chapter 3: Formal Affordance-based Models of Reproduction

puter virology and kinematic reproducer engineering [50], and has been influential in

fields as diverse as psychology [36] and economics [99]. Therefore, a formal model of

reproduction such as the one presented in this chapter could be applicable and relevant

to any of the aforementioned fields.

Many formal studies of reproductive systems already exist. There are examples

within theoretical biology (see, e.g., [141, 110]), which is concerned primarily with the

study of life as we find it, largely through the development of formal mathematical

models of existing biological systems. However, the focus on biological life reduces the

applicability to life and reproduction in general.

The work presented in this chapter differs from the above, however. Formal afford-

ance-based reproduction models are defined with the aim of providing a class of re-

production models that can be related through refinements, and classified in a formal

manner, e.g., as unassisted or assisted, trivial or non-trivial.

The work is sufficiently abstract that it can be readily applied to examples of re-

production from biology, computer virology and artificial life. However, the focus is

not on reproduction as we find it (i.e., organic life), but rather on reproduction in

general. This fundamental difference also distinguishes the fields of artificial life and

biology, and therefore the approach to formal modelling of reproduction presented in

this chapter is informed by the principles of the study of artificial life. Therefore the

work in this chapter is most closely related to formal notions of reproduction in the

field of artificial life, and it is these notions that we will focus on in this section.

3.7.1.1 Löfgren’s Approach to Modelling Reproduction

Löfgren presents an axiomatisation of reproduction based on a comparison between

explanation and reproduction [92]. The author explains that to fully understand a

system or concept, that is, to be able to explain it, requires sufficient knowledge to

reproduce that system or concept. For example, students in a university are tested

on their understanding of a subject through their ability to reproduce details of the

subject under exam conditions. For example, we could define π2 as a function that

explains (reproduces) entity π1 such that π2(π1) =< α, β, . . . , π1 >. When interpreted

as a reproduction process, this equation can be read as “π2 models the function of an

automaton that produces a sequence of outputs α, β, . . . culminating in the reproduction

of π1”. When interpreted as an explanation process, this equation can be read as “π2

is a function that produces a proof sequence α, β, . . ., ending with a proven theorem

π1”. Therefore, explanations and reproduction are related.

Löfgren then presents two characterisations of different types of reproducer:

• A symbiotically self-reproducing pair of distinct entities π1 and π2 must have a

96

3.7 Summary

complete explicability chain of length 2, such that

π1(π2) = < . . . , π2 >

π2(π1) = < . . . , π1 >

The length of the explicability chain increases if we have more than a pair of

entities in the symbiosis.

• An atomically self-reproducing entity π must be a unit-length complete explica-

bility chain, such that

π(π) =< π > . (3.3)

Löfgren states that “atomic self-reproduction shall result from the symbiotic self-

reproduction when all the distinct entities of the symbiotic case coalesce”, that Equa-

tion 3.3 implies the existence of a function which is in its own domain and range, and

that Wittgenstein argued [164] that function cannot be its own argument, and that

Rosen argued [122] that a function cannot be a member of its range. Löfgren supports

this idea with a proof that reproduction of this type is inconsistent with an ordinary

set theory, namely that defined by von Neumann, Bernays and Gödel [10]. However, as

the author proves, an axiomatisation of atomic self-reproduction is possible, and such

functions do exist in this sense.

In later work, Löfgren proposed an axiomatic explanation of reproduction, based

on formal definitions of “productive”, “reproductive” and “self-reproductive” [93]:

• An object A is productive in a surrounding S if the configuration d of A forces

the surroundings to produce some object B, denoted A→ d→S B.

• An object A is reproductive in a surrounding S if there are objects Ai with

descriptions di such that A→ d1 → A1 and Ai → di+1 →S Ai+1 for i > 0, i.e., A

forces S to produce a reproductive object.

• An object A is self-reproductive in a surrounding S if A produces a copy of itself

in S.

The importance of Löfgren’s work is, therefore, in demonstrating that while some

formal definitions of reproduction lead to contradictions [164, 122] (especially within

well-founded set theory), reproduction is nevertheless describable within formal sys-

tems.

97

Chapter 3: Formal Affordance-based Models of Reproduction

3.7.1.2 A Universal Framework for Self-Replication

Adams & Lipson give a formal framework for describing reproduction [3], with the aim

of defining the difference between trivial and non-trivial reproduction on a continuous

sliding-scale, rather than as a dichotomy based on Turing-completeness, or indefinite

heredity, for example. The authors view reproduction as a property of a reproducer and

its environment, rather than simply a property of a reproducer, and suggest their formal

framework as a means of comparing a reproducer relative to different environments.

The authors define an environment E as a single state of a (presumably closed)

system. The set of E–configurations E is the set of all possible states of the system

that includes E, and a time-development function T : E ×X → E (where X is the set

of non-negative real numbers R
+ or natural numbers N

+, depending on whether we are

modelling a continuous- or discrete-time system), in which T (E, x) returns the state

E′ that exists after the amount of time x has passed. Therefore, progression between

states is deterministic. A subsystem set X∗ is the collection of all subsystems of some

system X, and the set of possible subsystems E
∗

is union of all F ∗ such that F ∈ E.

In order to distinguish the portion of a state corresponding to a reproducer, there is

a dissimilarity pseudometric d : E
∗
× E

∗
→ R

+, such that d(x, y) + d(y, z) ≥ d(x, z),

d(x, y) ≥ 0 and d(x, x) = 0. The presence Pε(E,S) of a subsystem S in an environment

E within tolerance ε is defined as the probability that a randomly selected subsystem

T ∈ E∗ will satisfy d(T, S) ≤ ε, i.e., the presence of S in E is a measure of how much

of S can be found in E. When Pε(E,S) ≥ 0 it means that S is ε-present, and S is

ε-possible when there is some time t such that S is ε-present in T (E, t).

The momentary relative replicability of a system S in E1 and relative to E2 with

tolerance ε at time t is:

RM (S,E1, E2, ε, t) = log
Pε(T (E1, t), S)

Pε(T (E2, t), S)

The following special cases of RM are defined: RM (S,E1, E2, ε, t) = 0 when E1 =

E2; RM (S,E1, E2, ε, t) = −∞ when Pε(T (E1, t), S) = 0 and Pε(T (E2, t), S) 6= 0; and

RM (S,E1, E2, ε, t) = ∞ when Pε(T (E2, t), S) = 0 and Pε(T (E1, t), S) 6= 0.

The relative replicability over time τ0 to τ1 of a state S in environments E1 and E2,

in which S is ε-possible in E1 and E2 with tolerance ε is defined as:

RT (S,E1, E2, ε, τ0, τ1) = log

∫ τ1
t=τ0

Pε(T (E1, t), S) dt
∫ τ1
t=τ0

Pε(T (E2, t), S) dt

In other words, replicability over time is based on the ratio of the sums of all momentary

relative replicabilities for E1 and E2.

98

3.7 Summary

The overall replicability is given by the limit:

RO(S,E1, E2, ε) = lim
t→∞

RT (S,E1, E2, ε, 0, t)

Then, the overall self-replicability of some system S in an environment E is given by

RS(S,E, ε) = RO(S,E,E−S, ε, where S is minimally-present in E, d(E,E′) is minimal

for E′ = E − S and S is not ε-present in E′ but is ε-possible in E′. In other words,

RS gives a value representing how present S becomes, given that it started as a single

reproducer (environment E), compared to when it isn’t present (environment E − S).

Therefore if RS = 0, then the inclusion of S does not affect the likelihood of finding

S in some future state; if RS > 0 then S is a reproducer as it increases in number

over time, and if RS < 0 then S reduces in number over time (i.e., it appears to be

self-destructive).

The authors present examples in which they apply their framework: a cellular

automaton, a fibre-optic ring and a case of crystal growth. In every case, the authors

identify reproducing systems and identify their overall self-replicability empirically:

negative, positive and positive respectively.

Adams & Lipson therefore provide a framework for describing reproductive systems

within their environments, and a metric for tracking the reproductive success of those

systems.

3.7.1.3 Autopoiesis

The theory of autopoiesis (which means literally “self-creation”) was given by Varela

et al [147]. The aim of autopoiesis is to describe a class of self-creating systems, of

which biological life forms are examples, in order to describe the organisation of living

systems. One of the main features of autopoiesis is a description of the functionality

and structure of things that reproduce.

Autopoietic systems are described in terms of unities, which may be readily-analys-

able wholes with constitutive properties, or complex systems that can be identified

through analysis of their components and their relationships. Given this context, the

following conditions must be satisfied in order to identify an autopoietic system:

1. the unity must have identifiable boundaries;

2. the unity must be composed of describable constitutive elements;

3. the unity must be a mechanistic system, i.e., the component properties are capa-

ble of satisfying relations that determine their interactions and transformations

within the unity;

99

Chapter 3: Formal Affordance-based Models of Reproduction

4. the boundaries of the unity must be respected by the components at the bound-

ary through preferential neighbourhood relations and interactions between them-

selves;

5. the components of the boundary of the unity must be produced by interactions

of the components of the unity, either by transformation of previously produced

components or by transformations and/or coupling of non-component elements

which enter the unity through its boundaries;

6. all other components of the unity must either be produced as in (5), or if they

are not produced must be necessary permanent constitutive components in the

production of other components.

Varela et al demonstrated that autopoiesis is sufficient to describe living biologi-

cal systems, and although the authors were clearly influenced by biochemical systems

and existing biological life, the principles of autopoietic systems have subsequently

been identified in fields as diverse as communication theory, management, economics,

psychology, and sociological systems (pp. 145–6, [50]). In addition, computational

autopoiesis continues to be an active and influential research area within the field of

artificial life [103].

3.7.1.4 Reproduction in Cellular Automata

Cellular automata consist of a set of cells, where each cell has a state and a neighbour-

hood of other cells. The states of the cells in the neighbourhood determine the state of

the cell in the next time step. The way in which a cell’s state is determined from the

states of the cells in its neighbourhood is called the transition rule. The transition rule

is applied to all of the cells in parallel, so that the states of all the cells are updated

simultaneously [133].

States, neighbourhoods and transition rules can be anything we wish them to be.

The study of cellular automata is well-developed, and the apparent fascination by many

researchers is most likely a result of the surprising emergent properties of even simple

cellular automata.

Take, for example, a simple cellular automata developed by Conway known as

the Game of Life [51]. The cells are arranged in a 2-dimensional grid in which the

neighbourhood consists of the eight adjacent cells. The state of each cell is a Boolean

value: it can either be on or off. The transition rule consists of four simple rules:

1. Survival. If a cell is on, and there are two or three cells in its neighbourhood

whose states are on, then the state of the cell in the next time step is on.

100

3.7 Summary

2. Death from overpopulation. If a cell is on, and there are four or more cells in its

neighbourhood whose states are on, then the state of the cell in the next time

step is off.

3. Death from loneliness. If a cell is on, and there are less than two cells in its

neighbourhood whose states are on, then the state of the cell in the next time

step is off.

4. Birth. If a cell is off, and there are exactly three cells in its neighbourhood whose

states are on, then the state of the cell in the next time step is on.

When animated using these rules, certain configurations of cells reproduce over a num-

ber of time steps (e.g., the glider in Figure 3.1). Other configurations quickly die out

or reach a steady state, others manage to generate reproducers indefinitely.

Cellular automata are ideal for research into reproduction because they can be de-

fined formally, they are generally simple to understand, and readily generate reproduc-

ing patterns [133]. The first application of cellular automata to this problem was by von

Neumann, who defined a reproducing automaton that consisted of a configuration of

cells within a 29-state cellular automaton. Von Neumann’s automaton was a universal

constructor, in that it could construct any configuration of cells given the right program.

Reproduction therefore consisted only of creating a program (i.e., self-description) that

would describe the automaton and another copy of the program [149, 133].

Von Neumann’s automaton can be seen as a constructive proof of the existence of

computational self-descriptive reproduction (i.e., reproduction of a machine with sepa-

rate self-description and reproductive mechanism). However, the reproduction process

of the automaton is not tractable, and is more complex than necessary for reproduc-

tion. Codd designed an 8-state cellular automaton consisting of a universal constructor

in the form of a loop, inside which the self-description was stored [30, 89]. Langton

subsequently simplified Codd’s design by eliminating the requirement on universal con-

struction, resulting in “Langton’s loops” [89, 90]. The reproducing loop architecture

of Langton was simplified even further by Byl [22] and Ludwig [97]. The study of

reproduction in cellular automata is of significant interest in the field of artificial life;

Sipper [133] gave a detailed overview in 1998. Notable further developments since then

include Sayama’s Evoloops [129], a variation of Langton’s loops incorporating repro-

duction, and Oros & Nehaniv’s Sexyloops [111], which model sexual reproduction and

parasitic infection between loops.

101

Chapter 3: Formal Affordance-based Models of Reproduction

3.7.1.5 Reproduction Classification by Dawkins

Dawkins describes an informal classification of reproducers based on five different cri-

teria:

1. Longevity: how long does the reproducer live?

2. Fecundity: how frequently does reproduction occur?

3. Fidelity: how accurate is the reproductive process? How likely is it that the

offspring of the reproducer will be able to reproduce?

4. Does the reproducer affect the probability of reproduction (active), or not (pas-

sive)?

5. Does the reproducer give rise to an unlimited number of successive generations

(germ-line), or not (dead-end)?

Dawkins’ classification, which appeared in his book The Selfish Gene [36], is natu-

rally tailored towards the comparative analysis of the reproductive properties of genes.

Nonetheless, the classification can be applied to a variety of reproducers, as the criteria

are sufficiently abstract.

An interesting feature of this classification is that each criterion is a parameter that

can affect how likely it is that the reproducer will succeed in a competitive environment

populated with other reproducers, e.g., the most successful reproducers will have high

longevity because they will be able to reproduce more than less long-lived reproducers,

assuming that everything else remains constant. For other criteria, it is less clear

whether what effect a change might have, e.g., a high-fidelity reproducer might produce

lots of fertile offspring, but the rate of evolution will be lower, so the reproductive

success might decrease over time.

3.7.1.6 Reproduction Classification by Taylor

In his Ph.D. thesis [142], Taylor describes the implementation of an artificial life system

called Cosmos, somewhat inspired by Ray’s Tierra artificial life system [117]. After a

description of the experiments performed within the system, Taylor gives a reproducer

classification system based on three criteria:

1. The degree to which the reproductive mechanism (algorithm) is explicitly en-

coded within the reproducer, rather than being implicit in the physical laws of

the universe.

102

3.7 Summary

Figure 3.7: Taylor’s classification of reproducers. Reproduced with permission
from [142]. By Taylor’s classification, this figure is therefore an assisted, indefinite-
heredity reproducer with an implicitly-encoded algorithm.

2. Whether reproduction happens purely as the result of the physical laws of the

universe (auto-reproduction), or whether it also requires additional physical

and/or logical machinery (assisted reproduction).

3. The number of offspring of the reproducer that are capable of reproduction. i.e.,

whether the reproducer has limited or indefinite heredity.

Items 1 and 3 are continua, i.e., these scales are continuous, whereas item 2 is a

dichotomy, i.e., this scale has two discrete classes. Taylor notes that item 3 does not

classify a particular reproducer, but rather a lineage of reproducers. Also, the more

explicit the encoding of the reproductive algorithm, the less likely it is (in general)

that a reproducer has an indefinite heredity, and therefore criteria 1 and 3 are not

independent. (For several examples of Taylor’s classification of various reproducers,

see Figure 3.7.) It is interesting to note that Taylor’s distinction between limited and

indefinite heredity is similar to Dawkins’ comparison between germ-line and dead-end

reproducers.

The classification presented by Taylor is informal, and is influenced by the findings of

Taylor’s study of the Cosmos system, in which reproducers are programs that reproduce

and compete for survival within a virtual memory environment. The origins of the

classification do not imply a loss of generality, however, as the classification criteria

seem to be applicable to many different examples of reproduction.

103

Chapter 3: Formal Affordance-based Models of Reproduction

3.7.1.7 Reproduction Classification by Luksha

Luksha presents two different formal classifications of reproducers [98] based on a formal

model of reproduction by McMullin [102]. McMullin’s formal definition of reproduction

is as follows:

• Let M be a set of machine types. For any m ∈ M let O(m) denote the subset

of machine types that are producible by m, i.e., O(m) represents the offspring of

m. Then, m is a constructor provided O(m) 6= ∅, and m is a reproducer provided

m ∈ O(m).

Luksha extends McMullin’s framework to include a difference metric such that

d(x, y) denotes the difference between reproducers x and y, d(x, y) = 0 denotes that

y is an exact copy of x, and d(x, y) ≤ D if y is considered an imitation of y, where

D is some level of acceptable variation. Three sub-classes of reproduction can then be

identified (let sn denote the nth-generation descendent of the ultimate ancestor s0):

1. Exact reproduction, in the case where d(s0, st) = 0.

2. Near reproduction of a parent, in the case where d(st, st+1) < D.

3. Near reproduction of an ancestor, in the case where d(s0, st).

McMullin also describes a measure of complexity c(m) that assigns a value for all

m ∈ M that describes the complexity of m by some arbitrary measure. This com-

plexity measure is used by Luksha’s second classification, which compares the relative

complexity of the reproducer and the environment in which it reproduces:

1. Quasi-self-reproduction where c(R) < c(E), in which reproducers are strictly

dependent on a system of higher complexity which is external to the reproductive

process, e.g., biological viruses and genes.

2. Semi-self-reproduction, where c(R) ∼= c(E), in which reproducers are of similar

complexity to their environments, e.g., organisms with parasitic reproduction.

3. True self-reproduction, where c(R) > c(E), in which reproducers are complex au-

tonomous systems that reproduce in an environment consisting of basic elements,

e.g., cells and self-reproducing societies (e.g., [99]).

Whilst this reproduction classification is interesting, it assumes that (i) there exists

fair, accurate, and computable functions c and d, which is not guaranteed. At the very

least, definition of reliable functions c and d would seem to be a difficult task.

104

3.7 Summary

3.7.2 Comparisons with Other Approaches

3.7.2.1 Comparison with Löfgren’s Approach

The axiomatisation of self-reproduction given by Löfgren involves two possible charac-

terisations of reproduction: symbiotic and atomic. Both cases are defined relative to

certain entities. There is an obvious correlation with our approach, which is also based

on entities. Furthermore, both symbiotic and atomic reproduction can be interpreted

using affordance-based reproduction models.

Symbiotic self-reproduction could be interpreted as follows. Where Löfgren specifies

that entity π1 produces entity π2, we could specify the reproduction model Mπ2
with

π1, π2 ∈ Entπ2
and π1 ∈ Affπ2

(a) for all actions a ∈ Aπ2
. Likewise, we could specify an-

other reproduction model Mπ1
that shows how π2 produces entity π1, in which the roles

of π1 and π2 in Mπ2
are reversed. Therefore symbiotic self-reproduction corresponds

to mutually assisted reproduction of two reproducers π1 and π2.

Atomic reproduction could be interpreted even more simply. For some atomically

self-reproducing entity π, we specify a reproduction modelMπ with Entπ = {π}. There-

fore, atomic self-reproduction corresponds to unassisted reproduction of one reproducer.

Symbiotic and atomic self-reproduction can therefore be specified using affordance-

based models, but the translation is not exact. For instance, affordance-based models

must have the reproducer in start and end states, whereas Löfgren’s definitions make

no such requirement. Also Löfgren specifies reproduction functionally, without any

mention of the state transition systems which are specified by those functions. As state

transition systems are a necessary part of affordance-based models, the only sensible

assumption to make when creating the affordance-based model is that the transition

system is a trivial one (e.g., s
a

7−→ s′). Much of the affordance-based models, which are

best suited for ecological modelling of reproduction across any number of time steps,

is therefore redundant.

Another interesting parallel is that Löfgren notes that “atomic self-reproduction

shall result from the symbiotic self-reproduction when all the distinct entities of the

symbiotic case coalesce.” The idea of coalescence is also used throughout this chap-

ter, and particularly in the proof of the Unassisted Reproduction Theorem, to show

how assisted models are related to unassisted models. In this sense, the Unassisted

Reproduction Theorem captures formally Löfgren’s statement.

Löfgren’s definitions of “reproductive” and “self-reproductive” can also be specified

using affordance-based models:

• An object A is reproductive in a surrounding S if there are objects Ai with de-

scriptions di such that A → d1 → A1 and Ai → di+1 →S Ai+1 for i > 0, i.e., A

105

Chapter 3: Formal Affordance-based Models of Reproduction

forces S to produce a reproductive object.

We can specify that all objects A,A1, . . . are members of a self set (see Sec-

tion 3.4) α. Then we specify a model Mα with reproductive path s
a

7−→ s′ and

{α, S} ⊆ Entα. The notion of A forcing S to produce a reproductive object

implies that A and S are active in the act of reproduction, and therefore and

{α, S} ⊆ Affα(a). We could even form a model in which dn are entities them-

selves.

• An object A is self-reproductive in a surrounding S if A produces a copy of itself

in S.

Since the only requirement here is that A is reproductive, we form a simple affor-

dance based model MA with A as the reproducer, and A affording the action(s)

in the reproductive path.

Löfgren also defines “production”, in which an object forces the surroundings to

produce another object. However, it appears to be more difficult to define this in terms

of affordance-based reproduction models, since reproduction is not occurring.

The translation between Löfgren’s formalisations of “reproductive” and “self-reprod-

uctive” and the affordance-based models is not exact. However, there is a correlation:

Löfgren’s work centers around a notion of agency to distinguish different types of re-

production, and affordance-based models are designed to specify agency within the

reproductive act.

3.7.2.2 Comparison with A Universal Framework

The framework proposed by Adams & Lipson has several similarities with affordance-

based reproduction models. The framework identifies reproduction as an interaction

between system and environment, rather than simply a property of the system itself.

This implies that viewing a system (reproducer) within a different environment (model)

may provide a different perspective of an act of reproduction. The system–environment

view therefore fits neatly with affordance-based models, which alter their classification

through refinement, depending on differing views of the environment. A proper analysis

of an act of reproduction therefore comes through an analysis of the affordance-based

models that are related by refinements, rather than through a focus on any one partic-

ular model.

Further similarities between the two approaches include the framework’s dissimilar-

ity pseudometric, which gives a functional description of how the membership of a self

set (see Section 3.4) might be determined; and that both approaches have a notion of

presence of an entity (system) within a state (environment).

106

3.7 Summary

There are also several differences between the two approaches. The framework

by Adams & Lipson is able to model continuous- as well as discrete-time processes,

whereas affordance-based reproduction models are discrete. In principle, affordance-

based reproduction models can be applied to continuous-time reproduction, as long

as we give an abstract discrete-time description of the process. (For an example see

the definition of the affordance-based model of the bacteriophage virus presented in

Section 3.4.2.) The framework allows for the identification of systems within envi-

ronments, however, there is no description of collaborative action between entities as

there is with affordance-based reproduction models. The time-development function

identifies future states that can result deterministically from a current state, whereas

affordance-based models give a precise formulation of the state-transition system that

can be non-deterministic in nature. There are other minor differences, e.g., in the

specification of a reproducer and a path in an affordance-based model.

Overall, the differences between the two approaches are a result of a differing per-

spective on the role of a model of an act of reproduction: Adams & Lipson’s system–

environments give a way to track the reproductive success of a system within an envi-

ronment, resulting in a model that can be used for empirical analysis of deterministic

reproduction systems such as cellular automata. The aim of affordance-based mod-

els, in contrast, is to highlight the ecology of the act of reproduction, and how these

ecologies and their classifications can be affected by viewing the act of reproduction

differently, i.e., refining the reproduction model. The similarities of the approaches

suggest perhaps that the idea of reproduction as the interaction between a reproducer

and its environment, i.e., an ecological view of reproduction, has explanatory power.

3.7.2.3 Comparison with Cellular Automata

In the previous section, cellular automata were included as an example of a formal

system in which reproduction can be specified and researched. However, there is a

crucial difference between systems of this type and the formal reproduction models

presented in this chapter. Cellular automata are formal systems, but their use as

reproduction models comes as a result of the emergent reproductive behaviour of certain

configurations of cells within the automaton. In other words, cellular automata are a

formal system in which reproduction may occur, but our reproduction models are a

formal system in which the reproduction systems of cellular automata, biological life,

or any other reproducer, can be modelled and compared. Therefore, our approach can

be compared to work in the fields of cybernetics and systems theory, which study the

organisation of systems independent of the substrate in which they are embodied [163,

85].

107

Chapter 3: Formal Affordance-based Models of Reproduction

3.7.2.4 Arbitrariness of Assistance

Classification of affordance-based reproduction models as assisted or unassisted is a

natural application of an affordance-based model, which captures the ecological char-

acteristics and the collaborative nature of an act of reproduction. Assistance as a

classification mechanism also appears in Taylor’s classification, as the auto/assisted

dichotomy can be seen as analogous to the assisted/unassisted reproduction model

classification presented in this chapter.

In our approach to reproduction modelling, we do not define any requirements or

heuristics for identifying reproduction. Rather, we assume that a case of reproduction

has already been identified4, and that a reproduction model can then be constructed

to represent this process. Our formal definitions of assistance and triviality, then, are

not for the purposes of identifying reproduction, but rather to explore the structure of

the space of reproducers, and show how differences in viewing what is essentially the

same system can result in re-classifications.

For example, the Unassisted Reproduction Theorem states that once we have identi-

fied reproduction within a reproduction model that is classified as assisted or unassisted,

then we can relate this model to another model in which a similar act of reproduction

occurs (i.e., the labelled transition system is the same), but which is guaranteed to be

classified as unassisted. The converse of this is the Assisted Reproduction Theorem.

One conclusion that can be drawn from the two theorems is that classification

as unassisted or assisted appears not to be based upon any intrinsic property of a

reproduction system, but rather is dependent upon the way in which we choose to

view the system. To take the example from before, the photocopy could be classified

as a reproducer in an assisted reproduction model (e.g., the photocopier is another

entity which affords the actions in the path). However, the Unassisted Reproduction

Theorem guarantees a re-classification (through refinement) to a related model which

is classified as unassisted, which results from a “conglomeration” of the photocopy

and photocopier entities into a reproductive whole. In other words, if we take this

conglomerate entity as a reproducer, then it is classified as unassisted. One might

argue that the conglomerate entity is not a reproducer, as the act of reproduction

(i.e., photocopying) does not reproduce the photocopier. However, viewed from a more

abstract perspective, the act of reproduction does preserve the presence of a photocopy

and a photocopier in the start and end states of reproduction, so the conglomerate

entity, at least on this level, is a reproducer.

Therefore, if we accept affordance-based reproduction models as a reasonable model

of reproduction, then we must accept that classification as assisted or unassisted is only

4The identification of reproducing systems has been studied in detail elsewhere, e.g., [94, 69].

108

3.7 Summary

a result of the way in which we choose to view a particular example of reproduction,

that is, classification as unassisted or assisted is arbitrary.

One could question whether the related models of the Unassisted and Assisted

Reproduction Theorems, whilst they are proven to exist, describe a real-life reproduc-

tion system in a meaningful way. In other words: we have described a mathematical

structure which conforms to the formal definition of an affordance-based reproduction

model, but is it simply a mathematical structure, or is it indicative of some truth about

reality? We will attempt to show here that it is the latter.

In the case of the Unassisted Reproduction Theorem, we prove that for every as-

sisted reproduction model M , there is a related model M# (with the same labelled

transition system) that is classified as unassisted. We define this related model based

on E(M), which denotes the set of entities that afford action in the path of model M .

Using the function h : EntM → EntM# we map each entity in E(M) to the reproducer

rM# of model M#. We can view this refinement as a conglomeration of the entities

which collaborate in the act of reproduction. Refinement, at least in this case, describes

an ontological shift in which our perception (denoted by a reproduction model) is al-

tered, so that we come to view all of the entities in E(M) as the same entity in the related

model M#. For example, we could have a reproduction model in which a T4 bacte-

riophage virus is assisted by a bacterium in its act of reproduction. The conglomerate

entity, consisting of the T4 and the bacterium, is the reproducer in the model M#. As

is the case with the conglomeration of the photocopy and photocopier described above,

one could question whether a T4 virus and a bacterium actually reproduce, as copies

of the virus appear to be produced, but not copies of the bacterium. However, if we

consider the cyclical nature of reproduction, in which the T4 bacteriophages go on to

find other bacteria to infect, then at this point the T4–bacterium conglomerate entity

is reproduced. (This idea is expressed in more detail in Section 3.7.4.) Whilst this is

just one possible case of an assisted model and its unassisted counterpart, we believe

that conglomerate entities do make sense in other cases, and at least in all the cases

that we have come across.

In the case of the Assisted Reproduction Theorem, we showed that for any non-

trivial reproduction model M which is classified as unassisted, there is a refinement

from an assisted reproduction model M#. In this case, refinement is achieved through

the introduction of an entity G into model M#, which affords all of the actions afforded

by r in M . In other words, we can see G as an entity which takes on the “reproductive

responsibilities” from the reproducer. Again, we take the example of the bacteriophage

virus in which there is a non-trivial model which is classified as unassisted. Then,

the introduction of G which affords all of the actions that the bacteriophage used to

109

Chapter 3: Formal Affordance-based Models of Reproduction

afford can be seen as the introduction of the physical laws of the Universe, which are

ultimately responsible for any activity of the bacteriophage virus. Therefore, the onto-

logical shift, which results in re-classification as assisted, can be seen as a “demotion”

of the bacteriophage virus, in which its activity is attributed to some more fundamental

entity, G. Again, in all of the examples we have come across, the generation of a “more

fundamental entity” makes sense, as we can always attribute acts of reproduction to

the more fundamental laws of the universe in which reproduction takes place.

3.7.2.5 Sexual Reproduction

An obvious criticism of our reproduction models is that there is just one entity that is

identified as a reproducer. Therefore, this seems to be at odds with the idea of sexual

reproduction, in which the genetic material from two parents comes together in the

offspring. However, we can avoid this contradiction if we use the idea that the entity

that reproduces in the act of sexual reproduction is the male ♂ and the female ♀, but

rather the set {♂, ♀}, which we can denote ♂+♀. The reproducer ♂+♀ will reproduce

itself over time. The requirement that the reproducer is present in start and end states

of reproduction is fulfilled, even if only a single male or a female is produced during

reproduction:

♂, ♀ −→ ♂, ♀,♂

♂, ♀ −→ ♂, ♀, ♀

In other words, a complete reproductive unit composed of a male and female are present

in the start state, and they reproduce and generate a male or a female. In the end state,

a complete reproductive unit consisting of a male and female is still present (assuming

incest is not a concern, of course). Reproductive units of three or more members can

be modelled in a similar manner.

3.7.2.6 Triviality and Non-triviality

Reproduction can be identified in many different systems, from biological life forms

and viruses, to artificial life forms like cellular automaton gliders, von Neumann’s re-

producing automaton, Tierra organisms, seeding crystals, fire, photocopies, fixed points

of mathematical functions, etc. A common concern in the theoretical study of repro-

duction is to determine which of these reproducers are trivial, and which are non-trivial.

The rationale behind this approach is that some examples (e.g., seeding crystals, photo-

copies) do not seem to have the same order of complexity or organisation as the others

(e.g., biological life, von Neumann’s reproducing automaton). One possible solution is

110

3.7 Summary

to place life forms on a sliding scale of complexity, with the more trivial examples at

one end of the scale, and the increasingly less trivial examples further up the scale.

For example, this is the approach taken by Adams & Lipson and Luksha. However,

this always leaves the question of how we determine the measure of complexity of

organisation.

Another approach is to divide the space of reproducers with a dichotomy, by stat-

ing some predicate which must be satisfied by all non-trivial, or trivial examples of

reproduction. For example, Varela et al give a number of predicates which must be sat-

isfied by all autopoietic systems. Autopoiesis seems to be associated with non-trivial

examples of reproduction, e.g., a photocopy does not seem to satisfy at least some

of the requirements. Therefore, the notion of autopoiesis can be used to divide the

classification space of reproduction examples.

A combination of the above can be seen in the classifications of Dawkins and Taylor,

who both use a combination of continuous and dichotomous dimensions, for which we

could determine that the presence of a reproducer at a certain point within the multi-

dimensional classification space indicates triviality.

Within our approach, trivial reproduction models are those in which the reproducer

does not afford any of the actions in the reproductive path, i.e., it plays no part in re-

production. Non-trivial reproduction models, then, are those in which there is an action

in the reproductive path which is afforded by the reproducer. Therefore, our notion of

triviality versus non-triviality captures whether the reproducer is active or passive in

its act of reproduction. This is similar to the dichotomy in Dawkins’ classification, in

which reproducers are classified according to whether they affect the probability of their

own reproduction, or not. Notionally, a reproducer that affords one of its reproductive

actions assists its own reproduction, and therefore reproduction would not be possible

in that reproduction model without the reproducer, so in this sense it has increased

the likelihood of its reproduction.

The relationship between trivial and non-trivial reproduction models as presented

in this chapter is not as strong as the relationship between assisted and unassisted

reproduction models presented above, as we do not yet have any formal results along

the lines of the Unassisted and Assisted Reproduction Theorems. We have shown that

it is possible to refine trivial models to non-trivial models, though we do not yet know

whether this is possible for all or a specific sub-class of trivial and/or non-trivial models.

Therefore the pursuit of this knowledge is a topic for future work.

111

Chapter 3: Formal Affordance-based Models of Reproduction

3.7.2.7 Comparison with Multiagent Systems

Wooldridge [165] defines a software agent as “. . . a computer system that is situated in

some environment, and that is capable of autonomous action in this environment in or-

der to meet its design objectives.” A multiagent system is a system which “. . . contains

a number of agents, which interact with one another through communication.” An

affordance-based model, amongst other things, is a model of the collaborative behaviour

of different entities within a reproduction system. Alternatively, we could say that the

affordance-based model describes a multiagent system in which various entities assist

in different actions. Multiagent systems are of particular interest to artificial intel-

ligence researchers, because of the emergent intelligent behaviours of communities of

competing and collaborating simple software agents [165].

The recent interest in multi-agent systems has resulted in a resurgence of interest in

the notion of agency, and several formal models of agency have been proposed [119]. For

example, Reed & Norman describe a formal characterisation of Hamblin’s action–state

semantics, in which a notion of agency is made explicit [119]. The authors describe two

modalities, S and T, which denote “being responsible for the achievement of a state

of affairs” and “being responsible for the achievement of an action”, respectively. For

example, we write SxA to show that agent x is responsible for bringing about state

of affairs A, Txα to show that agent x is responsible for the action α, and Txα
y to

denote that an agent x is responsible for action α being performed by agent y. It is

the modality T that bears a resemblance to the affordance-based model function Aff .

By Definition 7, an affordance-based model has a function Aff : A → P(Ent) such

that, for all states s, if a is possible in s then e ε s for all e in Aff (a). In other words,

Aff maps an action to a set of entities which must be present if that action is possible

in a state. Reed & Norman’s modality T is somewhat similar in meaning, except that

Txa
y specifies that x is responsible for y doing a, i.e., we specify that x somehow is

responsible for an action that is performed by some other agent y (assuming x 6= y).

In contrast, within affordance-based models we say only that Aff (a) ⊆ Ent is a set

of entities that are collectively responsible for a, i.e., in affordance-based reproduction

models the notions of responsibility and doing are not separate.

Another research area relevant to multiagent systems in which notions of agency

appear is cooperation logics [146]. A formula [1, 2]p ∧ q states that the coalition of

agents 1 and 2 can act in such as way as to make the formula p ∧ q true. Clearly, this

can be applied to affordance-based models: [e1, e2, r]ρ might denote that entities e1, e2

and the reproducer r might collaborate in (i.e., afford) the act of reproduction, in which

ρ is true iff reproduction of r has occurred. In terms of affordance-based models we

could say that Ent = {e1, e2, r} and Ent ⊆ Aff (a) for all actions a in the reproductive

112

3.7 Summary

path. Furthermore, the same formula might denote that the same entities collaborate

on a particular action α, if ρ is redefined so that it is true iff the action α has occurred.

Whilst the similarities between affordance-based modelling and formal definitions

of agency are interesting, it is obvious that they are not the same thing, as the former is

defined with the aim of specifying the ecological conditions under which reproduction

can take place, and the latter are concerned with modelling the behaviour of commu-

nities of agents. For example, significant changes and additions would need to be made

to the formalisation of action–state semantics in order to allow for classification and

refinement of models, which is one of the main contributions of the work presented in

this chapter. Likewise, affordance-based reproductions models would need to undergo

major changes in order to mimic the sophisticated concepts defined using modal logics.

The considerable interest in formal notions of responsibility is indicative of the

relevance of affordance-based reproduction models beyond domains in which reproduc-

tion is a concern, and holds promise of a cross-fertilisation of ideas between formal

reproduction modelling and multiagent systems5.

3.7.2.8 Comparison with Formal Methods for Concurrent Systems

Notions of system and environment are also important within formal methods, specifi-

cally in the specification and verification of concurrent systems. Concurrent systems are

those in which programs execute concurrently. These programs may interact with each

other, making the task of specification and verification more difficult than for single

programs. There is an obvious parallel with our affordance-based models of reproduc-

tion, in which we focus on a single “program” (the reproducer) and its environment

of other “programs” (entities other than the reproducer). The interactions of these

programs are laid out in their affordance relationships.

One such formalism for specification and verification of concurrent systems is the

rely/guarantee method proposed by Jones [76], which works as follows. A program

acts in an environment. Actions by the program must satisfy a guarantee condition.

During its execution the program can trust that the rely condition, which specifies the

behaviour of the environment, will hold. The rely/guarantee method therefore enables

software developers to develop systems of concurrent programs.

A similar notion to rely/guarantee can be found in Definition 7, in which affordance-

based models are defined. The function Aff is defined such that if an action a is possible

in a state s, then e ε s for all entities e ∈ Aff (a). If we think of the reproducer as the

5Perhaps the cross-fertilisation may be a necessity should reproductive software and/or robotic
agents, e.g., for the purposes of space exploration [49], become a practical reality. The burgeoning
research area on kinematic self-replicating machines indicates that this could soon be the case [50, 39].

113

Chapter 3: Formal Affordance-based Models of Reproduction

“program”, then this definition specifies a rely condition that the environment must

satisfy: all affording entities must be present in the necessary states of the program’s

execution (i.e., reproductive process). Conversely, the affording entities can be thought

of as programs which guarantee their presence in necessary states.

However, there are significant dissimilarites between affordance-based models and

formal methods for concurrent programs, such as rely/guarantee, due to the fact that

they are designed to solve different problems. For instance, formal methods for con-

current systems are designed to have a rich vocabulary for specifying the interactions

between concurrently executing programs, where as affordance-based models state only

that there are interactions between entities (using the Aff function), and not what form

they take.

3.7.3 Comparison with Rosen’s Ideas on Life

3.7.3.1 Life Itself

Rosen describes the “machine metaphor” as the view of systems in terms of states

and transitions between states, and traces the lineage of this reductionistic idea to

Newtonian mechanics. In his book, Life Itself [123, 124], Rosen posits that scientific

reductionism6is unfit for modelling life. Life, Rosen says, is organisational and requires

a relational model consisting of interacting components which acquire their definition

of function from the system of which they are a part.

There are at least two overlaps between Rosen’s ideas and the ideas presented in

this chapter. The first is Rosen’s criticism of reductionist models of biological sys-

tems. Reproduction is, amongst other things, a biological phenomenon, and therefore

affordance-based reproduction models are descriptions of the biological world. The

reproduction models presented in this chapter are not reductionistic, however, as we

do not suggest that reproduction can be understood through a reduction to some pro-

cess at a lower level of abstraction, e.g., biochemical reactions. Rather, we model

reproduction at a natural level of abstraction, viewing reproduction at an ecological

level at which entities can cooperate in the act of reproduction. The second overlap

is Rosen’s use of interacting components to describe a relational model of a biological

system. Within affordance-based reproduction models, we can identify the entities as

being analogous to Rosen’s components, and the affordance function as a model of

the functional relationships between models. Therefore, the approach to modelling of

6Reductionism in science is encountered when the problem of understanding a complex system is
reduced to the problem of understanding its constituent parts. An example of reductionism is the idea
that an understanding of physics, which is concerned with the physical properties of the Universe, is
all that is needed to understand biological life.

114

3.7 Summary

reproduction presented in this chapter is in accordance with Rosen’s argument against

reductionism in biology.

3.7.3.2 Rosen’s Paradox

Rosen described a paradox that arises when defining reproduction in terms of cer-

tain mathematical functions, which disappears when a different kind of function is

used [122]. Whilst our reproduction models contain no information about the mecha-

nism of reproduction other than abstract information on states, entities, and so on, it

is interesting that there is a parallel between our notions of unassisted versus assisted

reproduction, and Rosen’s description of the conditions under which the logical paradox

arises. Specifically, Rosen’s paradox comes into play when the mathematical function

we use appears to describe unassisted reproduction, and disappears when we introduce

a notion of assistance.

Suppose we have a unassisted reproduction model Mu. Although our model does

not describe functionally the mechanism by which reproduction takes place, we might

suppose what is happening within such a model. The model is unassisted, so we know

that no entity other than the reproducer can afford actions in the reproducer’s path to

the reproducer. Therefore, we might think that reproduction is taking place only as a

result of the reproducer’s agency, e.g., for all actions a in the path pMu
, r ∈ AffMu

(a).

We might characterise this using a function f : A → B which maps admissible inputs

from A to admissible outputs in B. We know that f is reproducing, that is, f ∈ B.

However, Rosen showed that if this is the case then we reach a paradox because the

definition of f depends on the proper definition of A and B, and therefore neither the

mapping f not the range B can be defined until the other is defined.

However, Rosen also showed that there is no paradox if we define a mapping

F : A×B × (A×B) → (A×B) × (A×B)

which takes a construct ab and components a and b, and produces a copy of ab, i.e.,

F (a, b, ab) = (ab, ab). In other words, ab is the reproducer, which is “assisted” in

reproduction by the function F .

If f was the reproduction method used in Mu, then as a consequence of the Assisted

Reproduction Theorem, there must be a refinement of Mu, which we shall call Mu#,

such that Mu# models an assisted reproduction system. Since Mu# gives a description

of assisted reproduction, we might characterise this abstractly using the function F

instead of f .

It is logical to assume that any formulation of reproductive behaviour along the

115

Chapter 3: Formal Affordance-based Models of Reproduction

lines of f is incorrect, and that reproduction that may be correctly characterised as F

may be errantly described using f . In the context of affordance-based reproduction,

the function f reproduces itself, and is therefore an example of unassisted reproduction,

whereas F can be seen as an entity that assists ab in reproduction.

For example, we consider a model of Langton’s loops. One model, Ml, is unassisted,

and another M ′
l is assisted. For example, M ′

l could correspond to a model of Langton’s

loop in which the transition rule (corresponding to Rosen’s function F) enters, and

necessarily assists in every action in the reproductive path of the loop. Such a model is

logical, as the transition rule is indeed essential to the loop’s reproductive behaviour.

Suppose that the Assisted Reproduction Theorem tells us that M ′
l −→ Ml. We know

that in order to characterise Ml might result in an invocation of a paradoxical function

such as f , whereas M ′
l does not, since f is not an accurate characterisation of assisted

reproduction. Therefore, the Unassisted and Assisted Reproduction Theorems relate

the different models of the same reproductive process, and where we have a paradoxical

unassisted model analogous to the case where f was a reproducer, we are able to refine

this model to another assisted model which is non-paradoxical.

3.7.4 Reproduction as Preservation of Information Over Time

In the same way that reproduction models of the same reproducer can be specified at

different levels of abstraction, the entities within the model can be specified at different

levels of abstraction. When we denote that an entity e is present in a state s (e ε s), it

is possible we are talking about an abstract entity. For example, e could be a member

of a species, meaning that e ε s denotes that any individual organism from that species

is present in the state s. We described this idea in Section 3.4 as a “self set”, e.g., all

of the various individuals i in a species are members of a self set I , and all members

of the self set are identifiable as e within a reproduction model7.

The ideas of self sets and abstract entities make sense if we think of reproduction

as the preservation of information over time. By Definition 6, to say that some entity r

is a reproducer is to say that it is present in the start and end states of a reproductive

path. When combined with the concept of self sets, these models allow for an entity

of one species to reproduce and create a different entity of the same species, or even

of a different species, depending on how we define the self set. We also have room for

evolution, in that we can identify all possible progeny of a given reproducer as a self

set, and we do not necessarily specify that a self set is finite.

Another interesting property of reproduction models is that we specify that the

reproducer is present in the start and end states. There is also an implicit assump-

7Of course, self sets are inspired by Cohen’s viral sets [32].

116

3.7 Summary

tion that the reproductive path might be executed an unlimited number of times, for

example, if the path describes the reproduction of a glider on an unbounded cellular

automaton grid, there is no limit to the number of times that the glider can repro-

duce. We assume that the end state of reproduction can be updated to result in the

start state, and therefore reproduction can happen once more. In the simplest possible

scenario, the end state is the start state, and the reproductive path becomes a cycle.

This raises an interesting philosophical question: if we can portray a reproductive

process as a linear path or as a cycle, then are the start and end states for the linear

representation arbitrary? Clearly, if we design a labelled transition system as a cycle

then there is no start or end state. If we take this information and apply it to real-

life reproduction examples, does this imply that there the start and end states of

reproduction are unidentifiable also?

It is possible that this is the case. Take, for example the case of the bacteriophage

reproduction described in Section 3.4.2. In Equation 3.1 we specified the reproductive

path as follows:

s1
a

7−→ s2
i

7−→ s3
s

7−→ s4
m
7−→ s5

r
7−→ s6

If this path is cyclical, then we can also represent the above as

s2
i

7−→ s3
s

7−→ s4
m
7−→ s5

r
7−→ s6

X
7−→ s1

a
7−→ s2,

for example. In this example, X is the action described above, that takes the “end”

state s6 back to the start state s1. (Again, it may be the case that X does not affect the

state at all, making s1 = s6.) Naturally, we might think of s1 as being the start state of

bacteriophage reproduction, as this is the state preceding the attachment of the virus

to the cell. However, this need not be the case: we could think of s2 as the start state

of this reproduction process. The state s2 is where the bacteriophage is attached to the

wall of the host cell, and is ready to inject its genome into the host cell. However, this

raises another question: if s2 is the start state and s1 is the end state, which entity is the

reproducer? We know by Definition 6 that the reproducer must be present in start and

end states. However, in the example given in Section 3.4 we said that the bacteriophage

need only be present in s1, s5 and s6. However, we can resolve this contradiction if

we suppose that the reproducer is perhaps not the virus as it is pictured in Figure 3.2,

but rather the real reproducer is the information corresponding to the bacteriophage

virus, which is present at every point in the reproductive process. In states s1 and

s2 there is some information corresponding to the bacteriophage, stored as genotype

and phenotype within the mobile, pre-infection stage virus. In state s3 this version

of the virus is gone, as after infection we are left with a deflated bacteriophage husk

117

Chapter 3: Formal Affordance-based Models of Reproduction

attached to the outside of the cell, and inside the cell we have an RNA bacteriophage

genome floating around, waiting to be synthesised by the cell’s reproductive machinery.

However, the information needed to make the mobile virus from s1 and s2 is still present

in the potentiality of the genome and the reproductive machinery of the host cell8.

Similarly, we can see that for each step in the reproductive process the information

corresponding to the bacteriophage remains present. Therefore, this example supports

the idea of reproduction as preservation of information over time.

This discussion of reproduction and information seems reminiscent of Dawkins’

book The Selfish Gene [36], in which the reproducers in an act of reproduction are

not organisms, but rather the genes contained within them. The organism’s pheno-

type is simply an expression of those genes, and it is “designed” with only the aim of

reproducing the genes that created it. However, the notion of information described

above is not necessarily genetic information, and therefore the idea of reproduction as

preservation of information over time cannot be reduced to the idea of selfish genes. For

example, a computer virus might reproduce without any self-descriptive information

(i.e., a genome), as it obtains one during its act of reproduction by self-analysis.

Another consequence of reproduction as the preservation of information over time is

an explanation of trivial “fixed point” reproducers like the pen on the desk described in

Section 3.1, or a fixed point of a mathematical function. These examples of reproduc-

tion are essentially conditions which, by the laws of the universes in which they exist,

are stable and remain unaffected from one moment to the next. If the preservation of

information over time is reproduction, then any condition which is stable over time is

a reproducer. Perhaps then, the more complex reproducers are those which progress

through a series of states (a reproductive path/cycle) in order to preserve that infor-

mation. These non-trivial reproducers include biological and artificial life, as well as

non-steady state trivial reproducers that exhibit change, e.g., growing crystals and fire.

3.7.5 Further Application to Artificial Life

We have shown by examples that it is possible to model the reproduction of computer

viruses, biological viruses and cellular automaton-based artificial life forms such as

8We can think of the reproductive machinery as some function f , and the genome g as the function’s
argument. Then, f(g) is the application of f to g, which results in the reproduction of the mobile
bacteriophage b, so we could say that f(g) = b. The function application f(g) always denotes b, and if
we take f to be a function which is computed, then there is some period of time between f(g) being
specified, and b, the result, being computed. However, the progression from f(g) to b is inevitable, and
all of the information needed to compute b from f and g is present at the stage of function application
f(g). It is interesting to note that at this point in the bacteriophage’s reproductive cycle, we are back
to von Neumann’s reproducing automaton, which contained an input tape (genome) and constructor
(reproductive machinery) sufficient to reproduce itself.

118

3.7 Summary

gliders and Langton’s loop. These examples were chosen for their clarity; in general,

computer and biological viruses are well-understood real-life phenomena. Also, these

are interesting applications of reproduction model classification and refinement; both

computer viruses and biological viruses have many obvious entities, and are therefore

ideal illustrations of the Unassisted and Assisted Reproduction Theorems.

It is obvious, but relevant, to state that models and refinements of other classic

artificial life examples are also possible; e.g., von Neumann’s reproducing automa-

ton [149]. Virtual machine-based artificial life environments such as Tierra [117, 118],

Core War [37] or Cosmos [142], have obvious characterisations of multiple dissimilar

entities, and these would provide interesting examples of our approach to reproduc-

tion modelling and classification. These systems are based on programming language

instructions at a similar level of abstraction to assembly language, and therefore were

not included as examples in this chapter as they would not have provided sufficient

succinctness or clarity for the demonstration of our reproduction models. However,

there is ample evidence, in our own work (see Chapter 2) and the Rewriting Logic

Semantics Project [105], that these kinds of programming languages can be formalised

using systems like Maude, and therefore these could be used to create affordance-based

reproduction models.

119

Chapter 3: Formal Affordance-based Models of Reproduction

120

Chapter 4: Formal Affordance-based Models

of Computer Viruses

4.1 Introduction

In this chapter we present a new approach to the classification of computer viruses based

on Gibson’s theory of affordances [55, 56]. This approach arose from work on the related

problem of affordance-based reproduction model classification, described in the previous

chapter, in which reproduction models can be classified as assisted or unassisted, trivial

or non-trivial, or using general-purpose predicates known as aspects. In this chapter,

we will classify computer viruses on the unassisted–assisted axis, and we will show that

a single computer virus can be classified differently depending on the construction of

the affordance-based computer virus reproduction model. We will demonstrate that

the difference in construction between reproduction models is analogous to viewing the

same computer virus with different anti-virus behaviour monitors. Therefore we are

able to describe formally the difference between behaviour monitors with respect to a

particular computer virus, thus giving a practical application of the affordance-based

reproduction models presented in the previous chapter.

The approach presented here differs from other models and classifications of com-

puter viruses, e.g., those described in Section 4.4.1, in that it is constructed upon a

formalised abstract ontology of reproduction based on Gibson’s theory of affordances.

Using our ontology we can classify computer viruses at different abstraction levels, from

behavioural abstractions in the vein of Filiol et al [46], to low-level assembly code se-

mantical descriptions in the vein of the work on metamorphic computer virus detection

in Chapter 2.

As was described in Chapter 1, computer viruses can be detected in a variety of

ways, which can be divided into those based on static or dynamic analysis. Behaviour

monitoring is a form of dynamic analysis, which involves observing the behaviour of

programs to discover suspicious behaviour. If a suspicious behaviour is observed, then

the behaviour monitor can flag that program or process for further action or investiga-

121

Chapter 4: Formal Affordance-based Models of Computer Viruses

tion, as it is likely to contain malware.

The capabilities of different behaviour monitors will vary, and therefore it is possi-

ble that a computer virus might be detectable using one behaviour monitor, but not

another. In fact, a recent study by Filiol et al has demonstrated the inconsistency of

the capability of behaviour monitors in different anti-virus software [46]. In this chapter

we will show how the method of classifying viruses as invisible or visible to behaviour

monitoring software can be equivalent to classification of formal computer virus repro-

duction models as unassisted or assisted respectively. Classification, as we will show, is

also possible “by hand”, but automation is advantageous given the frequency of mal-

ware occurrence and the laboriousness of manual classification. To this end we describe

the automation of affordance-based computer virus reproduction model classification.

One possible application of this approach is to increase the efficiency of anti-virus

software. Suppose that an anti-virus software system has a variety of computer virus

detection strategies, including behaviour monitoring, signature scanning and so on.

If system resources are limited, and a full search for viruses using a non-behaviour

monitoring method is therefore not practical, then it is logical for anti-virus software to

try to prioritise the detection (by non-behavioural monitoring means) of those viruses

that are invisible to behaviour monitoring software. Our approach is therefore useful

in this regard, as it can be used to automatically classify computer viruses as visible

or invisible to anti-virus software. This may be of particular use on systems where

resources are limited, such as mobile computing systems.

It is possible that similar approaches have been used previously to improve the

efficiency of anti-virus software. Therefore, the main novel contribution of this chap-

ter is not a new means of increasing the efficiency of anti-virus software, but rather

a theoretical explanation of the effects of viewing the same computer virus with dif-

ferent software, and a proof of the relevance to, and applicability of, affordance-based

reproduction models to computer viruses and other forms of reproducing malware.

4.1.1 Chapter Overview

In Section 4.2 we present our formal computer virus reproduction models, and describe

formally the difference between unassisted and assisted classifications of reproduction

models. We give several examples of formal reproduction models of real-life computer

viruses, and construct these based on low and high levels of abstraction. We then show

how decisions made in the formal model can result in different classifications of the

same computer virus.

In Section 4.3 we show how this flexibility of classification can be exploited, by

using it to tailor automatic computer virus classifications to the capabilities of different

122

4.2 Computer Virus Reproduction Models

anti-virus behaviour monitoring software. We also discuss a potential application to

computer virus detection: the development of an automatic classification system that

separates viruses that are detectable at run-time by behaviour monitoring from those

that are not. We show how ad hoc reproduction models can be generated and classified

automatically using static and dynamic analysis. By defining the notion of external

agency (on which we base the automatically-generated reproduction models) in accor-

dance with the capabilities of different anti-virus behaviour monitoring software, the

classifications of computer viruses are tailored to suit different anti-virus behaviour

monitors. We demonstrate this with the formal executable language Maude, which we

use to give a specification of an automatic computer virus classification system based on

dynamic analysis. We specify the various capabilities of behaviour monitoring software

using Maude, and show that they result in different classifications of the same com-

puter virus. We show how it is possible to develop metrics for comparing those viruses

that depend on external entities, so that viruses that rely on external entities can be

assessed for their potential difficulty of detection at run-time by behaviour monitoring.

Finally, in Section 4.4 we give an extensive overview of other computer virus classi-

fications in the literature, and compare them with our affordance-based computer virus

reproduction model classification.

4.2 Computer Virus Reproduction Models

4.2.1 Formal Models of Computer Virus Reproduction

Our formal models of computer virus reproduction are based on the formal affordance-

based reproduction models presented in Chapter 3. Our classification of reproducers is

based on the ontological framework given by Gibson’s theory of affordances. Originally

Gibson proposed affordances as an ecological theory of perception: animals perceive

objects in their environment, to which their instincts or experience attach a certain

significance based on what that object can afford (i.e., do for) the animal [55, 56]. For

example, for a small mammal, a cave affords shelter, a tree affords a better view of the

surroundings, and food affords sustenance. These relationships between the animal and

its environment are called affordances. Affordance theory is a theory of perception, and

therefore we use the affordance idea as a metaphor: we do not suggest that a computer

virus perceives its environment in any significant way, but we could say metaphorically

that a file affords an infection site for a computer virus, for example.

Our affordance-based computer virus reproduction models are, essentially, a sub-

class of affordance-based reproduction models. In the case of a particular computer

virus, it is natural to specify the virus as an entity, with the other entities composed

123

Chapter 4: Formal Affordance-based Models of Computer Viruses

of those parts of the virus’s environment which may assist the virus in some way.

Therefore, we could include as entities such things as operating system application pro-

gramming interfaces (APIs), disk input/output routines, networking APIs or protocols,

services on the same or other computers, anti-virus software, or even the user. We are

able to include such diverse entities in our models since we do not impose a fixed level

of abstraction; the aim is to be able to give a framework that specifies the reproductive

behaviour of computer viruses in a minimal way, so that classifications can be made

to suit the particular circumstances we face; we may wish to tailor our classification

so that viruses are divided into classes of varying degrees of difficulty of detection, for

example.

We assume that any model of a reproductive process identifies the states of affairs

within which the process plays itself out. For computer viruses, these states of affairs

may be very clearly and precisely defined: e.g., the states of a computer that contains

a virus, including the files stored on disk, the contents of working memory, and so

forth. Alternatively, we can use abstract state transitions corresponding to abstract

behaviours of the computer virus. We will demonstrate how these models can be

constructed, and how they are used in computer virus classification. Reproduction

models are usually based on a sense of how the computer virus operates and interacts

with its environment; different points of view can result in different reproduction models

of the same virus, each with its own classification.

This, of course, allows for both abstract reproductive systems where we have iden-

tified abstract actions which correspond to the virus’s behaviour, as well as low-level

modelling at the assembly code or high-level language statement level. As is the case

with affordance-based reproduction models, we assume that the relation v ε s can be

made abstract enough to accommodate an appropriate laxity in the notion of entity:

i.e., we should gloss v ε s as stating that the entity v, or a copy of v, or even a possible

mutation of v by polymorphic or metamorphic means, is present in the state s. In com-

puter virology, such an abstraction was explicit in the pioneering work of Cohen [31],

where a virus was identified with the “viral set” of forms that the virus could take.

This approach is useful for polymorphic or metamorphic viruses that, in an attempt to

avoid detection, may mutate their source code.

This discussion is summarised in

Definition 17. An affordance-based computer virus reproduction model is an afford-

ance-based reproduction model

(S,A, 7−→,Ent , v, ε, p,Aff) ,

124

4.2 Computer Virus Reproduction Models

where

• (S,A, 7−→) is a labelled transition system, describing the states and state transi-

tions of the computer executing the virus;

• Ent is a set of entities present during the virus’s execution, with v ∈ Ent the

particular computer virus that reproduces in the model;

• p is a path through the transition system representing the reproduction of the

virus v, i.e., a particular path which culminated in an offspring of the virus being

generated.

Note that every aspect of affordance-based models, as given on page 74, is preserved

— we simply apply affordance-based models to the problem of specifying computer virus

reproduction. As is the case with affordance-based models, the states and transitions

in the model may be low-level (e.g., states of the memory and file system) or high-level

(e.g., states corresponding to abstract actions, such as opening a file for reading and

writing).

As a result of this definition there are some interesting questions that arise. First,

we know that polymorphic and metamorphic computer viruses can vary syntactically,

so which of these variants is the one specified in this reproduction model? Second, if

a polymorphic or metamorphic virus is able to alter its syntax, then how do we define

the path of the virus’s reproduction model?

Both questions can be answered by invoking Cohen’s viral sets, discussed above,

and generalised to “self sets” in Chapter 3. In evolutionary systems, there is variation

both in the genome and the phenome, so the first question is equivalent to “which

of all the possible xs of species y are we specifying in the model?” In other words,

the reproducers specified in our reproduction models are abstract. In biology we are

able to identify dissimilar entities as being of the same species by their behaviour, or

physiology, for example. In a similar way, we can identify the various allomorphs of

a metamorphic computer virus through definition of a viral set that enumerates the

possible generations, or even by using an abstract description of the virus’s behaviour.

The second question is related to the first. The generations of a given polymorphic

or metamorphic virus are not semantically equivalent, but must remain behaviourally

equivalent. Therefore, we can define a typical execution run as any sequence of in-

structions that leads to the behaviour we expect of the virus. Since all generations

of the virus will share this behaviour, we can use a description of this behaviour to

define the reproductive path. Another way might to be to abstract from the particular

instructions used by the metamorphic computer computer virus, and use these abstract

actions to construct the path.

125

Chapter 4: Formal Affordance-based Models of Computer Viruses

We shall see below how these formal models of computer virus reproduction can be

used to classify computer viruses and other forms of reproducing malware.

4.2.2 Classifying Computer Viruses

The key distinction in our classification of computer viruses is the ability to distinguish

between computer viruses which require the help of external entities, and those that do

not. We call the former unassisted computer viruses, and the latter assisted computer

viruses.

As was the case in Chapter 3, it is not the reproducer itself that is classified as

unassisted or assisted, but its reproduction model. In fact, it is possible to create

affordance-based reproduction models of the same computer virus that are classified

differently. In Section 4.3, we use this flexibility to tailor our reproduction models to the

particular abilities of different anti-virus behaviour monitors, and classify as assisted

only those viruses detectable by the behaviour monitor.

In addition, our reproduction models do not enforce a particular level of abstraction.

For example, we could create a reproduction model of a computer virus in which the

states are the states of the processor executing the virus, and the actions are the

assembly language instructions which the processor executes. Alternatively, we could

view the virus as an abstract entity with a certain number of abstract behaviours, e.g.,

“opening a file” or “copying data”. As we shall see later in this section, the ability to

model viruses at different levels of abstraction is advantageous, because it can make

the modelling and classification process much simpler.

For example, the reproduction models of the Unix shell script virus and the Archang-

el virus presented in Sections 4.2.3 and 4.2.4 are of a low abstraction level, in that there

is one action in the path for every statement of the virus’s code. However, for the sake

of simplicity in Section 4.2.5 we will present a more abstract model of computer virus

behaviour, in which the individual statements which compose the Strangebrew virus are

abstracted to generalised actions that correspond to abstract reproductive behaviours

such as “open host file” or “search for a file to infect”. These abstract models are

efficient means of classification “by hand”, as computer viruses often contain thousands

of lines of code. However, in Section 4.3 we will show how classification using “concrete”

models (i.e., one action per instruction/statement) can be achieved by automated,

algorithmic means.

Regardless of the level of abstraction of a reproduction model, the overall distinction

between unassisted and assisted computer virus reproduction models remains the same.

Definition 18. A computer virus reproduction model can be classified as unassisted

iff there is no entity e, different from the computer virus v, in E(M). Conversely, a

126

4.2 Computer Virus Reproduction Models

4

5

6

7

8

...

echo st=sq{st}$sq > .1;

echo dq=sq{dq}$sq >> .1;

echo sq=dq{sq}$dq >> .1;

echo $st >> .1;

chmod +x .1

Figure 4.1: Statements from the Unix shell script virus showing use of echo and chmod.

computer virus reproduction model can be classified as assisted iff there is some entity

e different from v in E(M).

Since affordances are actions in the labelled transition system that are not possible

without the presence of some entity, we say that if there are any actions in the com-

puter virus’s reproduction path (which could be abstract actions such as “open file”

or less abstract examples like a specific instruction mov eax,ebx) that are afforded by

entities other than the virus itself, then the virus’s reproduction is assisted in some

way, and therefore the reproduction model is classified as assisted. In the converse

scenario, where there are no actions in the reproduction path of the computer virus

that are afforded by entities other than the virus, then the virus’s reproduction is not

assisted in any way, and therefore the resulting classification of the reproduction model

is unassisted.

4.2.3 Modelling a Unix Shell Script Virus

The virus given in Figure 4.1 is a Unix shell script virus which runs when interpreted

using the Bourne-again shell (Bash). The first three lines of the virus define three

variables that contain the program code and aliases for single and double quotation

marks. The next three statements of the program code output these data into a new

file called .1. The seventh statement of the program appends the program code to .1,

and the final statement of the program changes the file permissions of .1 so that it is

executable. At this point the reproductive process is complete.

We consider a typical execution run of the Bash virus, i.e., we neglect any anomalies

which might prevent the reproductive process from completing, such as the hard disk

crashing or the user terminating an essential process. We define a model of the Bash

virus’s reproduction MB as follows.

We base the labelled transition system on the statements of the Bash virus, so that

each statement corresponds to an action in the path. Therefore, we define nine states,

S = {s1, s2, . . . , s9} and eight actions A = {a1, a2, . . . , a8}, where statement i of the

virus code (see Figure 4.1) corresponds to the transition si
ai7−→ si+1. Therefore each

127

Chapter 4: Formal Affordance-based Models of Computer Viruses

statement in the shell script virus is an action, and the states therefore correspond to

the states of the shell which runs the script. The reproductive path is therefore

s1
a17−→ s2

a27−→ . . .
a87−→ s9

from starting state s1 to final state s9.

Next we must consider which entities are present in the reproduction model. The

virus uses the echo and chmod commands, which are actually programs within the

Unix file system, and are called by the shell when the virus executes. Therefore, we

can model echo and chmod as entities, and since the Bash virus reproduces, we can

specify that the set of entities Ent = {v, echo, chmod}, where v is the Bash virus.

The computer virus could not execute without echo and chmod, and we can model

this using affordances, i.e., echo and chmod afford certain actions to the virus. These

actions are the actions in which the echo and chmod commands are used. For example,

we can say that the actions a4, a5, a6 and a7 are afforded by the echo entity to the virus

because these actions correspond to statements in which the command echo appears.

Similarly, a8 is afforded by the chmod entity to the virus, because a8 is the action

corresponding to the eighth statement, which contains the chmod command. Formally,

we say that

Aff (a4) = Aff (a5) = Aff (a6) = Aff (a7) = {echo}

and

Aff (a8) = {chmod} .

Since we know that these actions are afforded by other entities to the reproducer, these

entities must be present in the states preceding these actions, in line with condition 4

of Definition 7. Therefore, echo ε s3, echo ε s4, echo ε s5, echo ε s6 and chmod ε s7.

In addition, we know that the Bash virus reproduces, and by Definition 7, it must be

present in the start and end states of the reproduction path, i.e., v ε s1 and v ε s9.

Classification as unassisted or assisted depends upon whether there are any entities

other than the reproducer which afford actions in the reproduction path. Actions

a4, a5, a6, a7 and a8 are actions in the path that are afforded to the virus by entities other

than the viruses, and therefore by Definition 18 reproduction model MB is classified as

assisted.

This is just one way to model the reproduction of the Bash virus, however. For

example, we could consider no entity other than the reproducer itself. Let us call this

reproduction model M ′
B. Let the labelled transition system of M ′

B be the same as MB,

i.e., SM ′
B

= SMB
, AM ′

B
= AMB

and 7−→M ′
B

= 7−→MB
, and let the reproducer be the

Bash virus, as before, i.e., rM ′
B

= rMB
= v. Let the Bash virus’s reproduction path and

128

4.2 Computer Virus Reproduction Models

start/end states be as before, and so pM ′
B

= pMB
and ss

M′
B

= ssMB
and se

M′
B

= seMB
.

Our model M ′
B differs from MB in that we assume that chmod and echo are given. So,

the only entity present is the virus itself, and therefore EntM ′
B

= {v}. Here, affordances

are not needed, and so AffM ′
B
(a) = ∅ for all a ∈ AM ′

B
. Again, we know that the Bash

virus reproduces and therefore is present in the start and end states of the reproduction

path, so v εM ′
B
s1 and v εM ′

B
s9. Since there are no actions in the path that are afforded

to the virus by another entity, we know that by Definition 18, M ′
B is classified as an

unassisted reproduction model.

4.2.4 Modelling Virus.VBS.Archangel

Archangel (see Figure 4.2) is a Visual Basic script virus written for the Microsoft

Windows platform. Archangel starts by displaying a message box, and declaring some

variables. In line 5 the virus obtains a handle to the file system in the form of an object

fso of the FileSystemObject class. A new folder is created, and then Archangel

uses the CopyFile method of the fso object to create a copy of itself called fun.vbs.

This method call uses a variable from the WScript class called ScriptFullName, which

contains the name of the Visual Basic Script file containing the Archangel virus. The

Archangel virus uses this method to reproduce a further five times. In addition to its

reproduction behaviour, Archangel executes its payload and attempts to run one of its

offspring via a Windows script called autoexec.bat.

We define a computer virus reproduction model for the Archangel virus called MA.

The labelled transition system is constructed in a similar way to the Bash virus in

the previous section, with one action corresponding to one statement. However, the

flow of control is more complex, as Archangel uses two conditional if–then statements to

execute lines 6 and 12 conditionally. As a result, the labelled transition system branches

at each of these points (see Figure 4.3). One possible reproduction path corresponds

to the case where the guards of the two conditional statements are true, and we specify

this path in our reproduction model:

pMA
= s1

a17−→ s2
a27−→ . . .

a327−→ s33

There are two different objects which assist the Archangel virus at different points in its

reproduction: fso and WScript. We could define these as two different entities which

afford the virus certain actions. Alternatively, we could consolidate them into one

entity representing the Windows Script Host which provides library classes to Visual

Basic scripts. The Archangel virus is also an entity which must appear in the model,

and therefore we define EntMA
= {vA, wsh}, where vA is the Archangel virus and wsh

129

Chapter 4: Formal Affordance-based Models of Computer Viruses

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

...

If Not fso.FolderExists(newfolderpath) Then

Set newfolder = fso.CreateFolder(newfolderpath)

End If

fso.CopyFile Wscript.ScriptFullName, "C;\WINDOWS\SYSTEM\fun.vbs", True

fso.MoveFile "C:\WINDOWS\SYSTEM*.*","C;\WINDOWS\MyFolder\"

fso, newfolder, newfolderpath

newfolderpath = "c:\WINDOWS\SYSTEM"

set fso=CreateObject("Scripting.FileSystemObject")

If Not fso.FolderExists(newfolderpath) Then

Set newfolder = fso.CreateFolder(newfolderpath)

End If

fso.CopyFile Wscript.ScriptFullName, "C;\MyFolder", True

fso.CopyFile Wscript.ScriptFullName, "C;\WINDOWS\SYSTEM\fun.vbs", True

fso.MoveFile "C;\WINDOWS\SYSTEM32","C:\WINDOWS\SYSTEM"

fso.CopyFile Wscript.ScriptFullName, "C;\WINDOWS\SYSTEM\SYSTEM32\

fun.vbs", True

fso.CopyFile Wscript.ScriptFullName, "C;\WINDOWS\StartMenu\Programs\

StartUp\fun.vbs", True

fso.DeleteFile "C:\WINDOWS\COMMAND\EBD\AUTOEXEC",True

fso.DeleteFile "C:\WINDOWS\Desktop*.*"

fso.CopyFile Wscript.ScriptFullName, "C:\\fun.vbs", True

set shell=wscript.createobject("wscript.shell")

...

Figure 4.2: Statements from Virus.VBS.Archangel showing the use of fso and WScript.

130

4.2 Computer Virus Reproduction Models

s13 s14 . . . s33

s7 s8 . . . s12

s34 . . . s53

s1 s2 . . . s6

s59 s60 . . . s79

s54 . . . s58

s80 . . . s99

a1 a2 a5

a6

a7

a7 a8 a11

a8 a11

a12

a13 a14 a32

a13

a14 a32

a12

a13 a14 a32

a13

a14 a32

Figure 4.3: Labelled transition system for Virus.VBS.Archangel.

is the Windows Script Host, of which vA is the reproducer in this model. Since the

Windows Script Host enables the virus to create an instance of the FileSystemObject

class, as well as access the WScript.ScriptFullName variable, it is reasonable to spec-

ify that the statements in which these object references appear are actions that are

afforded by the Windows Script Host to the Archangel virus. The object fso of class

FileSystemObject is instantiated in statements 5 and 11, and WScript is used in

statements 7, 13, 14, 16, 17, 20 and 21. The actions that correspond these statements

are a7, a13, a14, a16, a17, a20 and a21 and therefore AffMA
(ai) = {wsh} for each action ai

of these. By Definition 17 we know that the Windows Script Host must be present in

every state preceding these actions, and so wsh εMA
s for each state s in which one of

these actions is possible (i.e., s7, s12, s13, . . .). Finally, we know that the virus must be

present in the start and end states in the path, and so vA εMA
s1 and vA εMA

s33. By

Definition 18, this model is classified as an assisted model because there are actions in

the path that are afforded by Windows Script Host, an entity other than the virus.

There are many alternative models of Archangel that are possible. We define one of

these models, M ′
A, in order to demonstrate an alternative classification as unassisted.

We will use the same labelled transition system, reproducer and reproductive path in

M ′
A, and therefore SMA

= SM ′
A
, AMA

= AM ′
A
, 7−→MA

= 7−→M ′
A
, rMA

= rM ′
A

= vA and

pMA
= pM ′

A
. However, the Windows Script Host is not considered to be a separate

entity in this model. Therefore the set of entities consists of only one entity, the virus

itself, and so EntM ′
A

= {vA}. There is no need to model affordances, as only the virus

is present, and so AffM ′
A
(a) = ∅ for all actions a ∈ AM ′

A
. Since there are no affordances

in this model, the ε relation is defined only to indicate the presence of the reproducer

in the start and end states of the path, and so vA εM ′
A
s1 and vA εM ′

A
s33. There are

no actions in the path that are afforded by entities other than the computer virus, and

therefore by Definition 18, the computer virus reproduction model M ′
A is classified as

unassisted.

131

Chapter 4: Formal Affordance-based Models of Computer Viruses

4.2.5 Modelling Virus.Java.Strangebrew

Strangebrew was the first known Java virus, and is able to reproduce by adding its

compiled Java bytecode to other Java class files it finds on the host computer. After

using a Java decompiler to convert the compiled bytecode to Java, we analysed Strange-

brew’s reproductive behaviour. The full output of the decompiler, which is over 500

lines, is not necessary to explain the behaviour of the Strangebrew virus; therefore, we

will present an overview of Strangebrew’s reproductive behaviour for the purposes of

modelling and classification.

Strangebrew searches for Java class files in its home directory, which it analyses

iteratively until it finds the class file containing the virus. Then, it opens this file for

reading using an instance of the Java Application Programming Interface (API) class,

RandomAccessFile:

for(int k = 0; as != null && k < as.length; k++)

{

File file1 = new File(file, as[k]);

if(!file1.isFile() || !file1.canRead() ||

!as[k].endsWith(".class") ||

file1.length() % 101L != 0L)

continue; // go to next iteration of loop

randomaccessfile = new RandomAccessFile(file1, "r");

...

}

Once this file is opened Strangebrew parses the contents of the file, updating the file

access pointer repeatedly until it reaches its own bytecode, which it reads in two sec-

tions:

byte abyte0[] = new byte[2860];

byte abyte1[] = new byte[1030];

...

randomaccessfile.read(abyte0);

...

randomaccessfile.read(abyte1);

...

randomaccessfile.close();

Next the virus closes its host file, and enters a similar second loop, this time searching

132

4.2 Computer Virus Reproduction Models

for any Java class file that is not infected by the Strangebrew virus (i.e., it is looking

for potential hosts):

for(int l = 0; as != null && l < as.length; l++)

{

File file2 = new File(file, as[l]);

if(!file2.isFile() || !file2.canRead() || !file2.canWrite()

|| !as[l].endsWith(".class") || file2.length()%101L == 0L)

continue; // go to next iteration of loop

randomaccessfile1 = new RandomAccessFile(file2, "rw");

...

}

When Strangebrew finds a target for infection, it opens the file for reading and writing:

randomaccessfile1 = new RandomAccessFile(file2, "rw");

Strangebrew then finds the insertion points for the viral bytecode read in previously,

using a sequence of seek() method calls, e.g.:

...

randomaccessfile1.seek(j1);

int i5 = randomaccessfile1.readUnsignedShort();

j1 += 4;

randomaccessfile1.seek(j1);

int j = randomaccessfile1.readUnsignedShort();

j1 = j1 + 2 * j + 2;

randomaccessfile1.seek(j1);

...

Finally, Strangebrew writes its viral bytecode to the insertion points within the file to

be infected before closing it:

randomaccessfile1.write(abyte0);

...

randomaccessfile1.write(abyte1);

...

randomaccessfile1.close();

133

Chapter 4: Formal Affordance-based Models of Computer Viruses

The reproduction of the Strangebrew virus is then complete.

The reproduction models of the computer viruses presented earlier used labelled

transition systems at a low level of abstraction: each action corresponded to one state-

ment of the computer virus. If we are to define a formal reproduction model for

Strangebrew, then this would take considerable time, as there are over 500 lines of

code including loops and conditional statement execution, and therefore the labelled

transition system would be very complex. For this reason, we may wish to use abstract

actions corresponding to abstract behaviours of the virus: the action of writing to a file,

for example. Similar approaches have proven useful in computer virology, particularly

in the recent work by Filiol et al on behaviour-based detection strategies [46]. The use

of abstract actions does not compromise the accuracy of classification as unassisted or

assisted (as long as entities are unaffected, of course); if we determine that a particular

entity affords a particular low-level action (e.g., the use of a certain API function within

a statement), and that low-level action is part of the execution of the abstract action

(e.g., to open a file for reading), then we know that the same entity must afford the ab-

stract action to the virus, as the action could not execute without the assistance of the

affording entity. In addition, it should be possible to give refinements to the abstract

model from more concrete models. Suppose that we have a low-level specification of

the operational semantics of the Java bytecode1. Then, it would be straightforward

to generate a low-level model of Strangebrew based on the transition system that cor-

responds to the execution of Strangebrew at the bytecode level. Therefore, we could

construct refinements from this low-level model to the abstract model in the same way

we did in Chapter 3.

Therefore, we will define an abstract reproduction model MS for the Strangebrew

virus, which uses an abstract description of behaviour in the form of a labelled transition

system. Let the following abstract actions, based on the description of the behaviour

1Indeed, such a specification already exists for Java bytecode [41, 42]. It is written in Maude, and
is similar to the Maude specification of Intel 64 used in Chapter 2.

134

4.2 Computer Virus Reproduction Models

of the virus presented above, represent the behaviour of the Strangebrew virus:

a1 = Search for host file containing the virus.

a2 = Open host file.

a3 = Find viral code in host file.

a4 = Read in viral code.

a5 = Close host file.

a6 = Search for a file to infect.

a7 = Open file to infect.

a8 = Find insertion point.

a9 = Write viral code to file.

a10 = Close infected file.

No other actions are required to model the reproductive behaviour of the virus, and

therefore we define the set of actions AMS
= {a1, a2, . . . , a10}. The actions take place

in the following sequence from the initial state s1 to the final state s11:

s1
a17−→ s2

a27−→ . . .
a107−→ s11

This sequence of actions and states is the reproductive path of the Strangebrew virus.

There are no other states, actions or transitions required to model the virus’s behaviour,

and therefore this is also a definition of the labelled transition system of MS .

As mentioned earlier, the virus uses an object of the RandomAccessFile class from

the Java API, and therefore we can define this class as an entity. The virus itself is

an entity, and therefore EntMS
= {vS , raf}, where vS is the Strangebrew virus, and

raf is the RandomAccessFile class. This class is used twice in the reproduction of the

Strangebrew virus; once for each of the two files that are opened. We can view the

instantiation of this class as the acquisition by the virus of a handle to a particular file

system. In effect, this opens a file for input and output, because once this handle is

obtained, the virus can use RandomAccessFile class instance methods to read() from

and write() to the file, as well as seek() viral code and insertion points before it

close()s the file.

Therefore, the act of opening a file is afforded by the RandomAccessFile entity to

the virus. This act is performed twice in abstract actions a2 and a7, and therefore

AffMS
(a2) = AffMS

(a7) = {raf}. By Definition 17, we know that any entity which

affords an action must be present in all states that precede that action, and therefore

135

Chapter 4: Formal Affordance-based Models of Computer Viruses

raf εMS
s2 and raf εMS

s7. We also know that the virus, as the reproducer in the

model, must be present in the initial and final states, and so vS εMS
s1 and vS εMS

s10.

By Definition 18, the reproduction model MS is classified as assisted if and only

if there is an action in the virus’s path which is afforded by an entity other than the

virus. Both a2 and a7 fulfil these criteria, and therefore MS is a classified as an assisted

reproduction model.

There are many different ways of specifying a reproduction model for the Strange-

brew virus. One of these reproduction models, M ′
S , can be defined as follows. The

labelled transition system, reproducer and path are the same as in MS , so that SMS
=

SM ′
S
, AMS

= AM ′
S
, 7−→MS

= 7−→M ′
S
, rMS

= rM ′
S

= vS and pMS
=M ′

S
. However, there

is only one entity, vS , and no affordances, so that AffM ′
S
(a) = ∅ for all actions a ∈ AM ′

S
.

Since the only entity is the reproducer, we need only state the minimal assumption from

Definition 17 that the reproducer is present in the initial and final states of the repro-

duction path, i.e., vS εM ′
S
s1 and vS εM ′

S
s10. The model M ′

S therefore has a different

classification, because it is an unassisted reproduction model, as there are no entities

different from the reproducer that afford any action in the path to the reproducer.

4.2.6 Modelling an Assembly Language Computer Virus

In the following example we will demonstrate how we can define an affordance-based

computer virus reproduction model in which the reproductive path is s
a

7−→ s′, i.e., there

is only one abstract action a. Therefore all classifications are based on the differences

in the entities which afford the action a. This example paves the way for the next

section on automatic classification, in which the labelled transition system may not be

known in detail.

The MINI-44 virus described by Ludwig [96] is a simple x86 assembly language

virus for the MS-DOS operating system. The virus searches iteratively for executable

files, which it overwrites with its own code. Figure 4.4 shows an excerpt of the virus’s

search algorithm.

The virus interacts with the operating system using the int 21H instruction. This

instruction calls the Interrupt Service Routine (ISR) 21H, which handles the request

based on the information stored in a number of registers. Since the interrupt service

routine is a part of the operating system, we can think of it as an entity which is

separate to the virus.

In the construction of a model M of MINI-44’s reproduction, we can model the

reproductive path in an abstract way, s
a

7−→ s′, with just one action a corresponding

to the reproduction of the virus. As the interrupt service routine is considered to

be separate from the virus, we set EntM = {vM , 21H}, where vM is the virus itself

136

4.2 Computer Virus Reproduction Models

xchg ax,bx ;write virus to file

mov ah,40H

mov cl,42 ;size of this virus

mov dx,100H ;location of this virus

int 21H

mov ah,3EH

int 21H ;close file

mov ah,4FH

int 21H ;search for next file

Figure 4.4: An excerpt from the MINI-44 virus by Ludwig [96], showing use of the
operating system interrupt service routine 21H.

(the reproducer in this model), and 21H is the interrupt service routine of the same

name. We know that the virus uses the int 21H instruction to access interrupt service

routine 21H, and therefore we set 21H ∈ AffM (a). By the definition of computer virus

reproduction models, we know that vM εM s, vM εM s′ and 21H εM s. By Definition 18,

we know that M is an assisted model.

It is possible to specify a model of the MINI-44 virus in many different ways, e.g.,

each of the different functions of the interrupt service routine 21H (set by the value of

the ah register) could be considered as a different entity. One such model would be

the model in which the virus is the only entity. The rationale behind such a model

would be that we now take the interrupt service routine 21H for granted, i.e., it shall

not be considered a distinct entity. In this model M ′ we set SM = SM ′ , AM = AM ′ ,

7−→M = 7−→M ′ , rM = rM ′ = vM and pM = pM ′ . However, the set of entities Ent now

contains only vM , with vM εM ′ s, vM εM ′ s′ as before. Since there is only one entity

in this model, it has an unassisted classification.

In the four examples above we have used the same construction to create a new

computer virus reproduction model in which the classification is unassisted. It would

be possible to show that such a construction is possible for every assisted reproduction

model by using refinements, in the vein of the Unassisted and Assisted Reproduction

Theorems in Chapter 3. However, the purpose of these examples is to demonstrate that

different classifications for the same computer virus exist. In the next section we will

describe how these differences in classification mirror the differences in ability of various

anti-virus behaviour monitors, and how we can achieve classification automatically

using static and dynamic analysis.

137

Chapter 4: Formal Affordance-based Models of Computer Viruses

4.3 Automatic Classification

It has been shown in the previous section that it is possible to define formal computer

virus reproduction models, and classify them according to their degree of reliance on

external agency. The question arises: is it possible to automate this process so that

classification could be done without so much human toil? It seems that process of

defining a formal reproduction model — determining the labelled transition system,

which entities are present, etc. — is not easily automatable, since these are qualities

that human beings assign to computer viruses in such a way that makes sense to them.

These kinds of formal reproduction models are therefore ontological; they let us view

and classify computer viruses in a way that distinguishes common features and arrange

like with like. However, the classification of computer virus reproduction models, which

relies on determining whether a computer virus is reliant on external agency, shows

greater promise for automation. One can imagine a situation where an assembly code

virus can be analysed and classified according to whether it requires the aid of another

entity or not, once we have defined what that entity is, and what that aid might be.

For instance, if we choose the operating system to be an entity, then we can assume

that any assembly language statement which uses a feature of the operating system

API must be afforded by the operating system. Therefore we would know that the

resulting reproduction model of the virus must be assisted, because the reproductive

path of the virus (i.e., the sequence of statements executed by the virus) requires the

help of another entity (the operating system). Therefore, it is not necessary to define

every part of a reproduction model in order to determine whether it can be classified

as unassisted or assisted.

We base automatic classification on a number of assumptions, which depend on

whether we are using static or dynamic analysis. The method that we use for static

analysis in Sections 4.3.2 and 4.3.3 is as follows:

• We have some virus code, a list of entities, and for each entity we have a list

of “components” within the code that are afforded by that entity. We assume

that every line of the code is executed, and therefore each line is part of the

reproduction path of some ad hoc model. Therefore, any occurrence of any of

the components within the virus code indicates that there is an action in the

path which is afforded by another entity to the virus, and therefore the ad hoc

computer virus reproduction model is classified as assisted. Otherwise, if there

are no such components present, then we classify the ad hoc model as unassisted.

The method that we use for dynamic analysis in Section 4.3.4 is similar:

138

4.3 Automatic Classification

• We have a black box program which we know contains a virus. We assume that a

behaviour monitor can detect when the black box has started its execution, and

when that execution has terminated. The behaviour monitor is also capable of

detecting certain “events”, for example, when the virus opens a file. We assume

that when the virus is executing, it executes the reproductive path of some ad

hoc computer virus reproduction model. We assume that events witnessed by the

behaviour monitor are actions that are afforded by some entity other than the

virus, to the virus. If the behaviour monitor is able to detect any events, then

we know that there is some entity other than the virus which has afforded some

action in the reproduction path to the virus, and therefore the ad hoc computer

virus reproduction model is classified as assisted. If the virus finishes execution

before the behaviour monitor can detect any events, then the virus has not been

afforded any actions by another entity, and therefore it is classified as unassisted.

Using the methods described above, we can classify computer virus reproduction models

as unassisted or assisted using static or dynamic analysis. However, there are some

limitations.

One example in which static analysis is limited is in the case of computer viruses

that employ code obfuscation techniques, e.g., a polymorphic virus may use the oper-

ating system API by decoding these statements at run-time, so that they would not

appear in the source code of the virus. Therefore, static analysis for automated classifi-

cation is just as limited other methods that use static analysis, e.g., heuristic analysis.

In contrast, classification by dynamic analysis takes place empirically. The virus would

be executed a number of times, in order to determine whether it makes any calls to

an external entity. The advantage of dynamic over static analysis is that polymorphic

viruses would not be able to employ code obfuscation to hide their reliance on external

agency. However, the obvious disadvantage is that the virus may conceal its behaviour

in other ways, such as only reproducing at certain times so that we may observe the

virus to be unreliant upon other entities only because it has not reproduced. There-

fore we would need to be sure that the virus has reproduced, which in general is not

algorithmically decidable [31], and even for a particular known virus, can be a difficult

problem in itself.

Another obvious limitation of automatic classification is that different allomorphs

of the same metamorphic computer virus could have different classifications. For exam-

ple, suppose the behaviour monitor is only able to detect a certain call to the operating

system, which we therefore assume is a separate entity. It is conceivable that a meta-

morphic computer virus has two different allomorphs: one in which this API call is

used, and one in which it isn’t. Therefore, the virus will be classified as assisted in

139

Chapter 4: Formal Affordance-based Models of Computer Viruses

the former case, and unassisted in the later. Therefore we have two different classifi-

cations for the same virus. There are some obvious ways around this difficulty. The

first argument, guided by pragmatism, is that two different allomorphs with different

classifications are, from the perspective of the behaviour monitor, different computer

viruses and should be treated as such. Therefore, the problem of different classifications

disappears. The second argument, which is more philosophical, is that it is incorrect

to attempt to classify different allomorphs separately. Since these are variants of the

same virus, the solution here is to analyse a significant set of allomorphs of the same

metamorphic computer virus: if any are classified as assisted, then we must say that

the virus is assisted in general. Only if all are unassisted can we say that the virus is

unassisted in general.

The limitations of automatic classification by static and dynamic analysis outlined

here are similar to the limitations of static and dynamic analysis for other means of

computer virus detection and analysis, which have been discussed in detail in Sec-

tion 1.1.4 and elsewhere in the literature (e.g., ch. 5, [43]). Overall, classification by

automated means is possible but limited, as are most other forms of classification for

virus detection.

4.3.1 Behaviour Monitoring and Classification

In Section 4.2 we showed how computer viruses can be classified differently according

to how we define the virus’s reproduction model, e.g., defining the operating system as

an external entity might take a virus from an unassisted classification to an assisted

classification. We can take advantage of this flexibility of classification to tailor the

classification procedure towards increasing the efficiency of anti-virus software. The

increasing risk of reproducing malware on systems where resources are highly limited,

e.g., mobile systems such as phones, PDAs, smartphones, etc., is well documented

(see, e.g., [120, 145, 166, 107]). However, the limited nature of the resources on these

systems is likely to increase the difficulty of effective anti-virus scanning. In any case,

it is preferable to the manufacturers, developers and users of all computing systems to

use only the most efficient anti-virus software.

It is possible to adjust classification of viruses according to the behaviour monitoring

abilities of anti-virus software, and in doing so create a tailored classification that will

allow increased efficiency of anti-virus software. For example, if the anti-virus can

detect network API calls but not disk read/write calls, then it is logical to classify the

network as an external entity, but not the disk controller. Therefore, the reproducing

malware models classified as unassisted will be those that do not use the network or

any other external entity. The viruses whose reproduction models are assisted will be

140

4.3 Automatic Classification

2

3

4

6

...

Set FSO = CreateObject("Scripting.FileSystemObject")

Set HOME = FSO.GetFolder(".")

Set Me_ = FSO.GetFile(WScript.ScriptFullName)

...

Me_.Copy(Baby)

Figure 4.5: Statements from Virus.VBS.Baby showing the use of external methods and
attributes.

those that use external entities, and therefore can be detected at run-time by behaviour

monitoring. In other words, we can classify viruses according to whether or not they are

detectable at run-time by behaviour monitoring using affordance-based classification,

using techniques based on either static or dynamic analysis. In principle, we could also

use these methods to compare behaviour monitoring software by the sets of the viruses

that have an unassisted classification. For example, one form of behaviour monitoring

might result in 1000 viruses being classified as unassisted, i.e., the software is unable

to monitor the behaviour of those 1000 viruses. However, another form of behaviour

monitoring employed by a different anti-virus software might result in only 500 viruses

being classified as unassisted.

Therefore, we can see that capabilities of particular behaviour monitoring software

impose a particular set of classifications for models of computer viruses, because en-

tities are defined as those things beyond the virus, but whose communications with

the virus (via an API, for example) can be intercepted by the anti-virus behaviour

monitoring software. The logical conclusion here is that on systems without anti-virus

software capable of behaviour scanning, all viruses are classified as unassisted. There-

fore, all viruses with an unassisted classification are impossible to detect at run-time by

behaviour monitoring, whereas those classified as assisted have detectable behaviours

that can be tackled by behaviour monitoring. Of course, the exact delineation between

unassisted and assisted is dependent on the capabilities of the anti-virus behaviour

monitor, e.g., computer viruses that are classified as unassisted with respect to one

anti-virus behaviour monitor may not be unassisted with respect to another. For in-

stance, an anti-virus scanner that could not intercept network API calls may not be

able to detect any behaviour of a given worm, thus classifying it as unassisted. How-

ever, another anti-virus scanner with the ability to monitor network traffic might be

able to detect the activity of the worm, resulting in an assisted classification.

4.3.2 Static Analysis of Virus.VBS.Baby

In this subsection we will demonstrate automated classification by static analysis, in a

way that would be straightforward to implement algorithmically. Virus.VBS.Baby (see

141

Chapter 4: Formal Affordance-based Models of Computer Viruses

Figure 4.5) is a simple virus written in Visual Basic Script for the Windows platform. In

line 1 the random number generator is seeded using the system timer. Next, an object

FSO of the class Scripting.FileSystemObject is created, which allows the virus to

access the file system. A string HOME is set using the FSO.GetFolder(...) method to

access the directory in which the virus is executing. In line 4 the object Me_ is created

as a handle to the file containing the virus’s code. In line 5 the virus generates a random

filename, with the path set to Baby’s current directory, and in line 6 the virus makes

a copy of itself using the Me_ object, thus completing the reproductive process.

Automated classification by static analysis would involve searching the virus code

for the use of external entities. Of course, whether we consider an entity to be external

should depend on the abilities of the anti-virus behaviour monitoring software. There-

fore, we will consider three different situations corresponding to different configurations

of the anti-virus behaviour monitor.

In the first configuration, we suppose that the anti-virus software is not able to

monitor the behaviour at run-time at all, i.e., behaviour monitoring is switched off. In

this case, the anti-virus software is unable to distinguish between the virus and any

other external entities, and therefore there is just one entity in the reproduction model:

the virus itself. Therefore none of the actions in the path of a reproduction model of

this virus can be afforded by an external entity, and therefore under this behaviour

monitor configuration, the virus is classified as an unassisted computer virus.

In the second configuration, we suppose that behaviour monitoring is switched on

and the anti-virus software is able to intercept calls to other entities. Behaviour moni-

toring is achieved in a number of ways [43], which are are often very implementation-

specific (see, e.g., [139]). So, for the purposes of this example we will simply assume

that reference to the methods and attributes of objects, such as FileSystemObject,

that are not defined within the virus code are external to the virus. We can say that

an entity corresponding to the Windows Script Host affords the actions that are the

statements containing the object references, and that behaviour monitoring can inter-

cept the calls to these objects. We can see that statement 2 uses the CreateObject()

method, statement 3 contains a call to the GetFolder() method, statement 4 refer-

ences the GetFile() method and ScriptFullName attribute, and statement 6 refers to

the Copy() method. Since all of these methods are defined to be afforded by the Win-

dows Script Host to the virus, and we know that the reproductive path of the virus’s

reproduction model must contain statements 1–6, then we know that any reproduction

model based on these assumptions must be classified as assisted, as there are actions

in the path which are afforded by an entity other than the virus itself.

In the third configuration, we suppose that behaviour monitoring is again switched

142

4.3 Automatic Classification

on, and the anti-virus software is able to detect every statement executed by the virus.

This corresponds to the scenario in which the virus is being executed in a “sandbox”

by the anti-virus software, a means of detection of computer viruses, also called “code

emulation” (p.163, [43]). The anti-virus software is, therefore, able to monitor the

behaviour of all statements. We can model the sandbox as an entity which affords

each of the actions (statements) to the virus, since the virus could not execute these

statements without the sandbox. Again, the reproductive path would include these

statements as actions and therefore any reproduction model based on these assumptions

would be classified as assisted.

This example has shown the close relationship between “configurations” of anti-

virus behaviour monitoring software, and the resulting constraints on the reproduction

model of a computer virus. This in turn affects the classification of a virus as unassisted

or assisted.

4.3.3 Static Analysis of Virus.VBS.Archangel

In Section 4.2.4 we described Archangel (see Figure 4.2) using an explicit computer

virus reproduction model. In this section we will contrast the method of automated

classification by static analysis. In a similar way to the example in Section 4.3.2, we

will present three different classifications of Archangel using three different anti-virus

configurations identical to those used for Baby’s classification.

In the first configuration we suppose that there is no anti-virus behaviour monitor-

ing. As a result the only entity present in Archangel’s reproduction model is the virus

itself. Therefore we know that no external entity affords any actions in the virus’s path

to the virus, and therefore Archangel is classified as unassisted in this model.

In the second configuration, we suppose that an anti-virus behaviour monitor is

present and is able to distinguish calls to external methods and properties. Archangel

contains a total of 38 such calls to such methods and properties as MsgBox, CreateObj-

ect, FileSystemObject, FolderExists, CreateFolder, CopyFile, ScriptFullName,

MoveFile, CreateObject, DeleteFile, CreateShortCut, ExpandEnvironment, Win-

dowStyle, Save, CreateTextFile, WriteLine, Close and Run. All of these references

to external objects are evidence that these actions are afforded by some entity other

than the virus. We know that all of these actions are in the virus’s reproduction

path, and therefore the reproduction model of the Archangel virus can be classified

automatically as assisted.

In the third configuration, we suppose that Archangel is executed within a sandbox

by the anti-virus software. Since all instructions are emulated, the anti-virus soft-

ware is able to detect all behavioural activity, and the resulting reproduction model of

143

Chapter 4: Formal Affordance-based Models of Computer Viruses

Archangel must be classified as assisted.

4.3.4 Dynamic Analysis of Virus.VBS.Baby

Here we will present a specification of a classification system based on dynamic anal-

ysis, and apply it to Virus.VBS.Baby, the same virus classified by static analysis in

Section 4.3.2.

A specification of an anti-virus behaviour monitoring program was written using

Maude2 — a formal high-level language based on rewriting logic and algebraic spec-

ification [29]. (For an overview of Maude, see Section 2.3.) We define an operator,

observe(_), which takes a list of programming language statements and returns a list

of events that a particular behaviour monitoring program might have seen when that

statement was executed:

op a2 : -> Action .

op observe : List{Action} -> List{Event} .

As we saw earlier, the execution of a statement by a computer virus can be defined

as an action in a reproduction model. Here, a2 is an action which corresponds to the

execution of the following statement in a Visual Basic script:

Set FSO = CreateObject("Scripting.FileSystemObject")

We can define the relationship between an action and an event observed during dynamic

analysis by using an equation in Maude:

eq observe(a2) = CreateObject .

This equation specifies that when action a2 is performed, i.e., when the above state-

ment is executed, that the behaviour monitoring software observes an event called

CreateObject, in which the statement uses a method of that name to perform some

function. If an anti-virus behaviour monitor has the ability to observe this event, that

is, it can intercept the call by the virus to the entity which affords that event, then we

can specify this using the equation above.

Alternatively we could specify that when the statement above is executed, that the

behaviour monitoring software can observe nothing. We can specify this in Maude as

follows:

eq observe(a2) = nil .

2The full Maude specification can be found in Appendix D.

144

4.3 Automatic Classification

Here, we have defined that the operation observe(_), when given a2 as an argument,

returns nil — the empty list. In other words, there are no events associated with

the execution of a2, and we have specified this using Maude. In this way, we are

able to define different configurations of anti-virus behaviour monitoring software and

apply them to different computer viruses, to specify how automatic classification is

achieved algorithmically. In essence, the Maude code specifies the abstract behaviour

of an automatic classification algorithm that can classify computer viruses as assisted

or unassisted.

An important notion in Maude is that of reduction as proof. A reduction is when a

term is re-written by applying the equations as rewrite rules repeatedly, until no more

equations can be applied (in this sense, the equations are equivalent to the rewrite rules

in functional programming languages like Haskell). We can reduce a term using the

reduce keyword, e.g.:

reduce observe(a2) .

The Maude rewriting engine would apply the equation above to the term observe(

a2), resulting in the rewritten term “nil”. In other words, we have proven that

observing the action a2 resulting in observing no events. We can apply these reduction

to sequences of statements, and define other operations to classify viruses based on their

observed behaviour. Earlier in this section we described how it is logical to classify a

computer virus as assisted if a behaviour monitor is able to observe its behaviour,

and as unassisted if it is not. This results in the viruses that are undetectable by the

behaviour monitor to be classified as unassisted. Therefore, we can determine that if

the list of observed events is non-empty, that the virus is classified as assisted, if the

list of observed events is empty, then the virus is classified as unassisted. We can define

in Maude an operation that takes a list of events and gives a classification:

op classify : List{Event} -> Class .

var CL : List{Event} .

eq classify(nil) = Unassisted .

ceq classify(CL) = Assisted

if CL =/= nil .

The equations above state that if we present classify() with an empty list (nil),

then the resulting classification is Unassisted, otherwise it is Assisted — as desired.

For example, we can model the effects on the classification of Virus.VBS.Baby of

the different anti-virus behaviour monitors using this method. We start by defining

one action for each of the statements of the virus:

145

Chapter 4: Formal Affordance-based Models of Computer Viruses

ops a1 a2 a3 a4 a5 a6 : -> Action .

In the first configuration presented in Section 4.3.2, the behaviour monitoring is turned

off, and therefore no events are observed by the behaviour monitor for any of the

statements executed. The observe() operation specifies which events are observed for

the execution of different statements, so we specify it in such a way that none of the

actions will result in events being detected:

var LA : List{Action} .

eq observe(LA) = nil .

The equation above states that for any list of actions, the list of detected events is

empty. Therefore, we can use a reduction of the classify operation to map the list of

observed events to a classification for the Baby virus:

Maude> reduce classify(observe(a1 a2 a3 a4 a5 a6)) .

result Class: Unassisted

The Maude rewriting engine has confirmed that under this behaviour monitor config-

uration, the Baby virus has an unassisted classification.

We can also specify the second anti-virus configuration seen in Section 4.3.2, in

which references to the methods and attributes of objects not defined in the code of the

virus were considered to be afforded by other entities. To translate this into Maude,

we must specify the list of events that would be observed for each of the actions:

ops CreateObject Randomize GetFolder GetFile ScriptFullName

Copy : -> Event .

eq observe(a1) = nil .

eq observe(a2) = CreateObject .

eq observe(a3) = GetFolder .

eq observe(a4) = GetFile ScriptFullName .

eq observe(a5) = nil .

eq observe(a6) = Copy .

Once again, we can test the resulting classification using a reduction:

Maude> reduce classify(observe(a1 a2 a3 a4 a5 a6)) .

result Class: Assisted

146

4.3 Automatic Classification

The Maude specification of the anti-virus behaviour monitor has shown that for this

configuration, the virus has an assisted classification, which we would expect given that

the behaviour monitor specified here has the ability to observe references to attributes

and methods contained in the code of the virus.

Similarly, we can show that the classification of the same virus is assisted, when

the virus is executed within a sandbox, i.e., its code is emulated by the anti-virus

behaviour monitor. Under these circumstances, the observed events are simply the

statements themselves, since every part of the virus’s execution is revealed to the be-

haviour monitor. So, we define events corresponding to the events, and specify that

the observed events for each action are the statements corresponding to that action:

ops s1 s2 s3 s4 s5 s6 : -> Event .

eq observe(a1) = s1 .

eq observe(a2) = s2 .

eq observe(a3) = s3 .

eq observe(a4) = s4 .

eq observe(a5) = s5 .

eq observe(a6) = s6 .

We can show using a reduction that the classification of this virus relative to this

anti-virus behaviour monitor configuration is assisted, which we would expect as the

behaviour monitor can observe all behaviours of the virus, and in essence, affords every

action in the path to the virus:

Maude> reduce classify(observe(a1 a2 a3 a4 a5 a6)) .

result Class: Assisted

As we mentioned earlier, it is possible to classify different viruses as unassisted or

assisted based on whether the actions in their path are afforded by other entities.

For automatic classification, this is equivalent to basing classification on whether the

behaviour monitor has been able to observe any of the virus’s behaviour: if so, we

classify the virus as assisted, if not we classify as unassisted. We can show, using the

Maude specification, how different viruses can be classified differently based on their

behaviour.

We define an anti-virus behaviour monitor that is only able to observe calls to the

GetFolder() method:

eq observe(a1) = nil .

eq observe(a2) = nil .

147

Chapter 4: Formal Affordance-based Models of Computer Viruses

2

3

4

6

...

Set FSO = CreateObject("Scripting.FileSystemObject")

Set HOME = "\"

Set Me_ = FSO.GetFile(WScript.ScriptFullName)

...

Me_.Copy(Baby)

Figure 4.6: A variant of Virus.VBS.Baby that does not use the GetFolder() method.

eq observe(a3) = GetFolder .

eq observe(a4) = nil .

eq observe(a5) = nil .

eq observe(a6) = nil .

Action a3 corresponds to the following statement in the Baby virus:

Set HOME = FSO.GetFolder(".")

To show how different viruses are classified, we will define a variant of the Baby virus

that does not use the GetFolder() method (see Figure 4.6). Since the third statement

of this virus differs from the original Baby virus, we must define a separate action

within Maude, which we call a3’:

op a3’ : -> Action .

eq observe(a3’) = nil .

In this behaviour monitor configuration, only calls to GetFolder() are observable, and

therefore action a3’, which does not use GetFolder(), has no observable components

and therefore the list of observed events for a3’ is empty.

We can now show the resulting classifications of the two versions of the Baby virus.

The original version, whose path consists of actions a1 a2 a3 a4 a5 a6, was classified

as assisted, where as the variant, whose path consists of actions a1 a2 a3’ a4 a5 a6,

was classified as unassisted:

Maude> reduce classify(observe(a1 a2 a3 a4 a5 a6)) .

result Class: Assisted

Maude> reduce classify(observe(a1 a2 a3’ a4 a5 a6)) .

result Class: Unassisted

Therefore, we have shown how different viruses are classified differently based on the

configuration of the anti-virus behaviour monitor. The Baby virus variant is classified as

unassisted, which indicates that none of its behaviours were observable by the behaviour

148

4.3 Automatic Classification

monitor, whereas the original Baby virus was classified as assisted, indicating that it

had observable behaviours. Therefore, the two classes differ crucially: those viruses

classified as unassisted are undetectable by the behaviour monitor. Therefore, we have

divided computer viruses into two classes based on whether they can be detected by

behaviour monitoring.

4.3.5 Metrics for Comparing Assisted Viruses

We might decide that the anti-virus behaviour monitoring software that has the fewest

viruses classified as unassisted is the best behaviour monitor; however, this might not

always be the case. For example, it may be the case that (1) so few actions of an

assisted virus are observable by the behaviour monitoring software that an accurate

(or unique) behaviour signature is not possible; or (2) an assisted virus makes so many

calls to a given resource that the behaviour monitoring software becomes overwhelmed

and consumes too much memory.

Clearly, the division between unassisted and assisted reproduction is not always

enough to determine which behaviour monitoring software is the best in a given situa-

tion. It may therefore be useful to invent some metrics for further subclassification of

the assisted computer viruses. Any such metric would further sub-divide the assisted

viruses according to arbitrary criteria; for example, one metric could deal with case (1)

above, and assign the value true to any viruses that have enough observable interac-

tions with the environment to create a unique behavioural signature, and false to any

that do not. Then, the viruses with the false value would be prioritised for detection

by means other than behaviour monitoring, in the same way that the unassisted viruses

are prioritised.

4.3.5.1 A Simple Metric for Comparing Assisted Viruses

We have shown how different viruses can be classified as unassisted or assisted based on

whether actions in their path are afforded by external entities. However, it is possible

to go further and develop metrics for comparing assisted viruses for increasing the

efficiency of anti-virus software. For example, there may be n different calls that a

virus can make to an external entity. So, in the least reliant assisted viruses, there may

be only one such call in the virus. Therefore, there are only n different behavioural

signatures that we can derive from knowing that there is one such call to an external

entity. Clearly, as the number, m, of such calls increases, the number of different

behavioural signatures, nm, increases exponentially. Therefore viruses that have more

calls to other entities may be more detectable at run-time, and conversely, viruses that

have fewer calls may be more difficult to detect. Therefore we might propose a simple

149

Chapter 4: Formal Affordance-based Models of Computer Viruses

metric for analysing the reliance on external entities of a given virus: calculate the

number of calls to external entities. The more calls there are, the more behavioural

signatures there are, and the easier detection should become. This metric therefore

lets us compare all those viruses with assisted classifications, and decide which are the

most and least detectable by behaviour monitoring.

Using this simple metric to compare the Baby and Archangel VBS viruses, we

see that Baby contains seven references to external methods or properties, whereas

Archangel contains 38. Using this näıve metric, we can see that Archangel’s reliance

on external entities is greater than Baby’s, and therefore we could place Baby higher

in a priority list when using detection methods other than behaviour monitoring.

4.3.6 Comparing Behaviour Monitor Configurations

In the static analysis examples presented in Sections 4.3.2 and 4.3.3, Baby and Archangel

were classified using three different anti-virus configurations. In the first configuration,

behaviour monitoring is inactive, and as a result Baby and Archangel are classified as

unassisted. However, this classification is not restricted to these two viruses; any virus

viewed within this anti-virus configuration must be classified as unassisted, since the

anti-virus software is not able to distinguish between the virus and any other exter-

nal entities. Since the intended purpose of the unassisted versus assisted distinction is

to separate viruses according to the possibility of detection at run-time by behaviour

monitoring, it follows that if run-time behaviour monitoring detection is inactive (as

is the case in this configuration where behaviour monitoring is not possible) then all

viruses must be classified as unassisted.

A similar case is in the third configuration, where the virus runs within a sandbox,

and its code is completely emulated by the anti-virus software. In this case, any virus

will be completely monitored, meaning that any virus’s behaviour is known to the

anti-virus software and therefore can be detected at run-time by behaviour monitoring.

Consequently, in this configuration all virus reproduction models must be classified as

assisted.

The second configuration, however, which most closely resembles the real-life sit-

uations encountered with anti-virus software, is also the most interesting in terms of

variety of classification. It was seen that Baby and Archangel were assisted, and then

we showed in Section 4.3.5 that by using a simple metric we could compare their relative

reliance on external entities, under the assumption that the more reliant on external

entities a virus is, the more behavioural signatures are possible and the more likely we

are to detect that virus at run-time by behaviour monitoring. It is also the case that

some viruses could be classified as unassisted, although we have not presented such an

150

4.3 Automatic Classification

example here. For example, some viruses such as NoKernel (p. 219, [139]) can access

the hard disk directly and bypass methods which use the operating system API. Since

API monitoring might be the method by which an anti-virus software conducts its be-

haviour monitoring, then such a virus would be undetectable by a behaviour monitor

(assuming that it did not use any other external entities that were distinguishable by

the anti-virus software).

Therefore, the ideal case for an anti-virus software is the ability to classify all

viruses as assisted within its ontology. However, this may not be possible for practical

reasons, and therefore the aim of writers of anti-virus software should be to maximise

the number of viruses that are assisted, and then to maximise the number of viruses

with a high possibility for detection using metric-based methods such as those discussed

in Section 4.3.5.

4.3.7 Algorithms for Automatic Classification

In this section we have shown how automatic classification could take place, either

by static analysis (in the case of the Visual Basic Script viruses in Sections 4.3.2 and

4.3.3), or by dynamic analysis (in the case of the Baby virus classified using Maude

in Section 4.3.4). We will now discuss the kinds of algorithms that could be used to

implement automatic classification.

In the case of static analysis-based classification of computer viruses, we can use

the component-based approach presented in Section 4.3. Since computer viruses can

be represented as a string of binary digits, we can define a set of components which

determine when assistance from external entities has been requested by the virus. Each

element in the set of components can be represented as a string of binary digits also,

and therefore classification of a virus occurs by searching for each component in the

string that represents the virus.

If we use a linear-time string matching algorithm, such as that by Knuth, Morris

and Pratt (K–M–P) [86, 34], then we can classify any virus in linear time, since our

classification relies on applying the string matching algorithm for every component in

the set, in the worst case. The time complexity of this approach is also mitigated

because the algorithm need only run until the first match of any of the components to

any of the instructions, whereas string matching algorithms like K–M–P would search

for all matches. The simple metric presented above can also be formalised using string

matching algorithms, in the same way as with (un)assisted classification, the only

difference being that all string matches must be counted.

In the case of dynamic analysis-based classification of computer viruses, we could

implement this using a simple extension of existing anti-virus behaviour monitoring

151

Chapter 4: Formal Affordance-based Models of Computer Viruses

software, as follows. In Section 4.3.4 we presented a specification of an algorithm

that would classify computer viruses using dynamic analysis. The Maude specification

describes a software system that takes as its input a list of observed behaviours of a

computer virus, and determines based on this list whether the virus should be classified

as unassisted or assisted. If the list is of behaviours monitored is empty (i.e., no be-

haviours are observed), then the virus’s reproduction model is unassisted with respect

to that behaviour monitor. Otherwise, if the list is non-empty, then the virus repro-

duction model can be classified as assisted. Clearly, the complexity of this procedure

is very low, and would be straightforward to implement.

4.4 Summary

In this chapter we presented an application of the formal affordance-based reproduction

models from Chapter 3 to the problem of computer virus classification. We focused

on classifying computer viruses as assisted or unassisted, as this classification captures

the notion of whether a computer virus’s behaviour can be monitored by an anti-virus

behaviour monitor.

In Section 4.2 we refined the definition of an affordance-based reproduction model to

an affordance-based computer virus reproduction model, and showed that the criteria

for classification as assisted and unassisted remain unchanged. We demonstrated the

application of computer virus reproduction models to four different real-life computer

viruses: a Unix shell script virus, a Visual Basic script virus, a Java virus and an x86

assembly language virus. In each case we demonstrated how the virus could be classified

as assisted or unassisted, based on the way in which we choose to view the virus’s

interactions with its environment. For example, we could choose to view the virus as

a lone reproducer, acting out reproduction solely by its own agency; alternatively we

could acknowledge the presence of other entities like the operating system, and model

their assistance in the act of reproduction. In Section 4.3 we described how classification

could be achieved automatically, either by static or dynamic analysis, and described

how classification as unassisted or assisted is related to the capabilities of an anti-virus

behaviour monitor: if the behaviour monitor cannot monitor the virus’s behaviour, then

this is analogous to the situation in which the classification of the virus is unassisted,

and the entities which collaborate in the act of reproduction cannot be distinguished. If

the behaviour monitor can monitor the virus’s behaviour, e.g., by intercepting calls to

the operating system, then we can imagine that the current ontology of the behaviour

monitor is such that it makes sense to specify the operating system as an entity separate

to the virus, which enables reproduction and changes the classification to assisted. We

152

4.4 Summary

gave worked examples of automatic classification based on static and dynamic analysis

and applied to real-life Visual Basic script viruses, and discussed the role of metrics

for increasing the efficiency of computer virus detection. Finally, we gave an overview

of the algorithmic implementation of automatic classification by static and dynamic

analysis.

Intuitively, computer viruses that are classified as unassisted within our classifica-

tion are those that are reproductively isolated, i.e., those that do not require the help

of external entities during their reproductive process. Consequently, those are classified

as assisted require help of external entities for their reproduction. Here our approach

is similar to the work of Taylor [142], who makes the distinction between unassisted

and assisted reproduction with respect to artificial life.

As we mentioned in Section 4.3.1, the work in this chapter might enable an increase

in the efficiency of anti-virus software. It is possible that behaviour monitoring has been

made more efficient in this way before, but this does not make our work redundant.

Indeed, we believe that the most significant contribution of this work is to be able to

make the distinction between viruses that are detectable at run-time from those that

are not, using a formal approach to reproduction modelling based on first principles

and those aspects of reproduction that are common to most, if not all reproducers:

states that change over time, and a number of assisting entities in the environment.

This approach to the affordance-based modelling of computer viruses has therefore

resulted in a useful classification schema, and regardless of whether it has (or will be)

implemented in anti-virus software, the formal models of computer viruses are shown

to have predictive and explanatory power — the benchmark by which we must judge

all formal systems.

4.4.1 Related Work

The original problem of classification in computer virology lay in distinguishing com-

puter viruses from non-reproducing programs [31], and to this end much of the literature

in the area is concerned with this problem, which is essential to the functionality of anti-

virus software [43, 139]. However, the classification presented here is a sub-classification

of computer viruses, and therefore is compared to other sub-classifications of the class

of computer viruses in the literature.

Despite the emphasis on classification schemes in this section, it is interesting to

note that there is an overlap between our approach and the work of Filiol et al [46]

on their formal theoretical model of behaviour-based detection, which uses abstract

actions (similar to those used in Section 4.2.5) to form behavioural descriptions of

computer viruses. The emphasis on behaviour-based detection is complementary to

153

Chapter 4: Formal Affordance-based Models of Computer Viruses

the approach to automated computer virus classification presented in Section 4.3, in

which the affordance of actions by external entities is directly related to the behaviours

observable by behaviour monitoring software of a computer virus, and the resulting

classification is tailored the behaviour monitoring capabilities of a particular anti-virus

software.

4.4.1.1 Classification by Adleman

Adleman [4] gives a formal approach to computer virus classification based on a formal

model of computation, specifically, recursive functions. Using first-order expressions

over the set of Gödel numberings of the partial recursive functions, Adleman defines two

conditions that may be true or false for any program: pathogenicity and contagiousness.

A pathogenic program “injures” other programs, whereas a contagious program infects

other programs. Since contagiousness and pathogenicity are two common features of

computer virus programs, Adleman is able to divide viruses into four disjoint subsets:

• Benign viruses are neither pathogenic or contagious with respect to all programs.

• Epeian viruses are pathogenic with respect to at least one program, but not

contagious with respect to all programs.

• Disseminating viruses are not pathogenic with respect to all programs, but are

contagious with respect to at least one program.

• Malicious viruses are both pathogenic with respect to at least one program, and

contagious with respect to at least one program.

Adleman then says:

“It may be appropriate to view contagiousness as a necessary property of

computer viruses. With this perspective, it would be reasonable to define

the set of viruses as the union of the set of disseminating viruses and the set

of malicious viruses, and to exclude benign and Epeian viruses altogether.”

This remark is interesting, since the most common view in the field of computer virology

is that a fundamental property of computer viruses is that they are able to reproduce.

Indeed, Adleman’s definition of benign viruses includes many trivial examples, such

as a program of zero length, that “produces” another program of length zero. Also,

Epeian viruses would include Trojan horse programs, that can have damaging effects,

but do not reproduce. So, if we assume that all computer viruses must reproduce (as

154

4.4 Summary

we have in this chapter), then this classification divides computer viruses into those

that have damaging effects, and those that do not.

A detailed description of Adleman’s classification of computer viruses is given by

Filiol (ch. 3, [43]).

4.4.1.2 Classification by Bonfante et al

Bonfante et al [13, 12, 14, 15] give a formal classification of computer viruses based

on recursive functions. Their approach to classification of computer viruses is different

from Adleman’s, as it is constructive, in that they apply Kleene’s recursion theorem to

the definition of various kinds of viruses. This classification is therefore functional, in

that sub-classes of viruses are determined by the abstract functionality those viruses

share. Bonfante et al observe that “Kleene’s theorem is similar, in spirit, to von Neu-

mann’s [149] self-reproduction of cellular automata. It allows the computation of a

function using self-reference”, and therefore the functionality that this classification de-

scribes is fundamentally about the reproductive behaviour of the viruses, rather than

other considerations like payload or classification of non-reproducing malware. This

work bears some similarities to Adleman’s work described in Section 4.4.1.1, because

both are based on computability theory and recursive functions, but the key differences

are that Bonfante et al have concentrated solely on reproducing programs, and have

extended the approach considerably in the description of polymorphic and metamor-

phic computer viruses [15]. In fact, Bonfante et al describe Adleman’s classification in

terms of their own approach, effectively encompassing it [14].

Bonfante et al start with Kleene’s recursion theorem, that if g is a semi-computable

function then there is a program e such that φe(x) = g(e, x), where φ : D → (D → D)

is a programming language, φe is the program e written in the programming language

φ, and D is some domain of computation. They then define a computable function

that captures the notion of virus reproduction. Using this apparatus, various types of

viruses can be classified:

• Overwriting viruses: let v be a virus, and let (p1, p2, . . . , pn) be a list of pro-

grams on a computer system. The virus v is overwriting if φv(p1, p2, . . . , pn) =

(v, v, . . . , v). In other words v overwrites every program pi with its own code.

• Ecto-symbiotic viruses: let v be a virus and let (p1, p2, . . . , pn) be a list of pro-

grams, as before. The virus v is ecto-symbiotic if

φv(p1, p2, . . . , pn) = (δ(v, p1), δ(v, p2), . . . , δ(v, pn))

155

Chapter 4: Formal Affordance-based Models of Computer Viruses

where δ(x, y) is a concatenation of x and y. Ecto-symbiotic viruses, therefore, are

viruses that do not change the behaviour of the programs they infect, but rather

add their own code parasitically.

• Organisms: let v be a virus and p be any program. Then, the virus v is an or-

ganism if φv(p) = (v, p). Therefore organisms are viruses that reproduce without

modifying any programs, i.e., they simply make copies of themselves.

• Companion viruses: Let v be a virus and p be some program. Then, the virus

v is a companion virus if φv(p) = v′ where for all x ∈ D, φv′(x) = φp(φv(x)).

Therefore, when a companion virus is executed, it reproduces before executing

the program that it has infected.

4.4.1.3 Phylogenetic Classifications

One of the most well-explored computer virus classification methods is phylogenetic

classification, in which viruses are related if they share some common feature, such as

a sequence of code that has been used in both viruses, or a pattern of behaviours at

run-time. Phylogenetics is the field of biology that deals with relations between groups

of organisms, and so these classifications are based on an application of techniques from

the field of phylogenetics to the domain of computer viruses.

The broad aim of several of these phylogenetic classification methods is automatic

classification of malware. For example, anti-virus software companies commonly classify

malware based on abstract families, where a group of viruses have an abstract name, and

each virus within the family is a variant. For example, in October 2007, the website of

anti-virus software vendor F-Secure listed over 90 variants of the Bagle family of worms,

called Bagle.A, Bagle.B, and so on. One application of phylogenetic classification would

be to take an unknown worm, and by comparison to other worms, classify it within a

family of related viruses.

Goldberg et al [61] give a formal definition of computer virus phylogeny trees, and

assuming that computer viruses use common code blocks which can be used to identify

“families” of related computer viruses, show how phylogeny trees can be constructed

algorithmically. The problem of the construction of phylogenetic directed acyclic graphs

(“PhyloDAGs”) is tackled, and theoretical results on the hardness of phylogenetic graph

construction are obtained. The approach is not applied to any real malware, as the aim

of the paper seems to be to provide a sound theoretical underpinning to the problem

of malware phylogeny.

Carrera & Erdélyi [24] describe a practical approach to malware phylogeny graph

generation based on an analysis of the functions used within the malware. A func-

156

4.4 Summary

tion call flow graph is generated for each malware example, and algorithms are used

to analyse the similarities between the graphs. A close similarity is suggestive of a

relationship, and so phylogeny graphs can be generated. The approach is shown to be

useful in classifying some known related malware as similar, but for other malware such

as the Bagle worm, for which there are variants lacking a reproductive mechanism, it

was not possible to show relatedness to a high degree using the technique.

Wehner [162] uses a method based on Kolmogorov complexity to determine the

complexity of various worms. Every pair of worms in the test set was assigned a

value, based on a technique called the normalized compression distance (NCD), which

represented the similarity between the pair. Then, a tree graph was constructed for the

test set which reflected the similarities between the different worms. This classification

is very similar to the phylogenetic classifications if we suppose that the reason that two

worms might be similar is that they are related as ancestor and progeny.

Karim et al [78, 79] present an approach to malware phylogeny using a technique

based on maximal π-patterns, a technique first used in bioinformatics to analyse the

occurrence of substrings within a string. Malware programs in the test set are concate-

nated together into a single string, and the maximal π-patterns are extracted, which

can then be used for feature or distance-based comparisons. These comparisons are

then used to construct a phylogeny tree for the malware.

4.4.1.4 Classification by Spafford

Spafford classification is based on an artificial life view of computer viruses [135]3. The

author presents an “evolution” of viruses, in which successive generations increase in

complexity. Of course, Spafford does not suggest that natural evolution is taking place;

although there is a refinement process at work that resembles an evolutionary system.

The first computer viruses were relatively simple; early personal computers did not

have anti-virus software, and so computer viruses did not need to ensure their survival

by code obfuscation, for example. The first anti-virus software was developed, and

in order to ensure the reproductive success of their creations, the virus writers had

to increase the complexity of their viruses in order to evade detection. This was the

beginning of the “arms race” between virus writers and anti-virus researchers.

Spafford’s classification gives a coarse-grained model of five generations of this “evo-

lutionary” process:

• Generation 1: Simple viruses, which do nothing more complicated than reproduce.

They are simple to detect by signature-based means, and their activity is easily

3It is interesting to compare Ludwig’s work on a similar theme (see Section 1.4.1).

157

Chapter 4: Formal Affordance-based Models of Computer Viruses

observed by an increase in file size, for example.

• Generation 2: Self-recognition viruses, which avoid repeated infection of the same

host file. An example of this kind of virus is the Strangebrew virus presented in

Section 4.2.5, which can detect whether it has already infected a file, and if so, will

not re-infect the same file. The advantage that self-recognition viruses have over

simple viruses is that they can evade detection for longer periods of time because

their presence is less obvious, and since they will only infect files a limited number

of times, they are unlikely to cause the computer system to run out of disk space

and become unusable — since this would most likely result in erasure of files

containing the virus, or even a re-install of the operation system, self-recognition

viruses ensure their survival by being more conservative in their reproduction

strategy.

• Generation 3: Stealth viruses, which are memory-resident, and are able to inter-

cept attempts by anti-virus software to read the contents of infected executable

files. Once the call is intercepted, the stealth virus returns information to the

anti-virus software that will appear innocuous.

• Generation 4: Armoured viruses. In order to understand and create detection

strategies for new virus threats, anti-virus researchers must attempt to reverse-

engineer computer virus code. Armoured viruses attempt to delay this process

through logical code obfuscation, in which unnecessary or confusing code is in-

troduced in order to obstruct the reverse-engineer.

• Generation 5: Polymorphic viruses, which refers to computer viruses whose code

is obfuscated using metamorphism and/or encryption. This obfuscation helps to

prevent reverse-engineering, as is the case with Armoured viruses, but also helps

to prevent detection by static analysis means such as signature scanning, heuristic

analysis, file integrity checking and spectral analysis, because the viral code can

have a different syntax for every virus offspring. This virus type is known to be

undetectable in general. Metamorphic computer viruses were discussed in more

detail in Chapter 2.

Spafford’s classification of computer viruses, like Adleman’s, is ontological, since it

presents a way of thinking about the domain of computer viruses and other forms of

reproducing malware. However, Spafford did not formalise his ideas, probably because

the primary goal of his research was to describe computer viruses in terms of artificial

life, rather than to develop a complete theory of computer virus classification.

158

4.4 Summary

4.4.1.5 Classification by Weaver et al

Weaver et al [151] have given an informal taxonomy of computer worms based on

several criteria including target discovery (the means by which the worm finds new

hosts to infect), carrier (the means by which the worm sends its code to new hosts),

activation (the means by which the worm’s code is executed on host machines), payloads

(the non-reproductive code that a worm may execute once infection has taken place)

and attacker motivation (the sociological and criminological reasons for the attack).

This classification is not formal, and includes a non-computational criterion (attacker

motivation), and therefore can be seen, perhaps, as a classification of the security

threats posed by worms, rather than a classification of the worms themselves. The

taxonomy is summarised as follows:

• Target Discovery. A worm can scan for potential hosts on the network (network

scanning), use pre-generated target lists (a list of IP addresses stored as

literal values, for example), externally-generated target lists (e.g., a list of

targets stored on a server), internal target lists (where information stored on

the host computer is used to find targets, e.g., an email address book), or passive

target discovery (the worm does not automatically seek new targets, e.g., it waits

for the user to send an email before attaching the worm code to the email).

• Propagation Carriers and Distribution Mechanisms. A worm can be actively

transmit its code as part of the infection process (self-carried), open a second

channel of communication for transmission of the worm code (second channel),

or embed itself in a normal communication channel (embedded).

• Activation. A worm can be activated by the user (human activation), by a

trigger such as rebooting the machine (human activity-based activation), by

a scheduled process such as a daemon program or auto-updater (scheduled pro-

cess activation), or through self-execution in which the worm can executed the

code of its offspring in order to continue the reproduction process (self activa-

tion).

• Payloads. A worm might not have a payload at all (none). If there is a payload,

then it could create a security vulnerability so that the machine can be accessed

by an attacker over the network (internet remote control), or it could create an

open mail relay for use by spammers (spam relays), or it could create an HTTP

proxy through which illicit or illegal websites can be routed (HTML-proxies),

or it could form part of a denial of service (DOS) attack by helping to bombard

another node on the network with traffic (Internet DOS), or it could perform

159

Chapter 4: Formal Affordance-based Models of Computer Viruses

espionage and spy on user data or activity (data collection), or it could offer in-

ternet remote control or data collection payloads for sale (Access for Sale), or it

could damage data on the host computer (data damage), or it could induce be-

haviour in human users through extortion or take control of physical objects that

are controlled over the network (physical-world remote control), or perform

malicious denial of service acts on physical systems such as mail order compa-

nies (physical DOS), or use devices connected to the physical world to perform

reconnaissance (physical-world reconnaissance), or damage physical objects

like erasable hardware BIOS circuity (physical-world damage), or modify the

worm’s behaviour by checking for updates from servers (worm maintenance).

• Attacker Motivation. The attacker may be motivated by experimental curios-

ity, pride and power, commercial advantage (e.g., a worm may be designed

to perform a denial of service attack on a competitor), extortion and crimi-

nal gain (e.g., holding a user’s data to ransom), malevolence without rational

motivation (random protest), political activism (political protest), terror-

ism, or cyber warfare (e.g., disrupting essential systems such as those used by

emergency services).

4.4.1.6 Industrial Classifications

Most anti-virus software companies have their own schemes for malware naming, which

involve some implicit classification, e.g., names like “W32.Wargbot” or “W97M/Trojan-

Dropper.Lafool.NAA” give some information about the platform (e.g., 32-bit Microsoft

Windows) and/or the primary reproductive mode of the virus (e.g., “trojan dropper”).

Many naming schemes are ad hoc, and for good reason: anti-virus software engineers

have to reverse engineer viruses as quickly as possible, in order to generate a means of

detection and removal, and because of this, the naming schemes for computer viruses

are generally not standardised or consistent [64]. As a result it is very common for a

computer virus to be known under several different names.

An example of an industrial virus classification is that made by the Symantec Cor-

poration [137] — vendors of a very well-established and popular anti-virus product.

Their malware naming syntax is given in Extended BNF notation as follows:

<malware-name> ::= <prefix>.<name>[.<variant>][<suffix>]

Examination of the malware naming scheme given by Symantec reveals that the <pre-

fix> can indicate any of the following:

160

4.4 Summary

• The platform that the viruses requires to reproduce, e.g., “W32” (32-bit Win-

dows) or “Linux”.

• The scripting language used by the virus, e.g., “BAT” (for viruses that infect

MS-DOS batch files).

• That the malware is a Trojan horse program, e.g., “Trojan”.

• The payload of the malware, e.g., “PWSTEAL” for Trojan horses that steal

passwords.

• The real-world effects of the malware behaviour, e.g., “DoS” for malware that

conduct Internet-based denials of service.

The <name> can be anything, and is presumably determined by the anti-virus re-

searcher(s) responsible for identifying the virus. For example, the name may be inspired

by the payload of the malware, e.g., “LoveLetter” for an email worm that spreads by

making the user believe they have been sent an amorous message. The <variant> is

usually some modifier used to denote a variant of the virus whose <name> precedes it,

e.g., “A”, “B”, and so on. The <suffix> denotes miscellaneous information about the

virus, including but not limited to the following:

• The reproductive behaviour of the malware, e.g., “@m” for email worms.

• The malware facilitates the reproduction of other malware, e.g., “.dr” for pro-

grams that “drop” other malware onto the computer system.

• The malware is a worm, e.g., “.Worm”.

For example, one piece of malware is denoted as W32.Beagle.AV@mm, indicating that

it reproduces using the 32-bit Windows platform, is a variant of the “Beagle” malware

family, and sends emails out en masse (“@mm”) in order to reproduce.

Recently there have been efforts to standardise the many and varied malware nam-

ing schemes, e.g., the Common Malware Enumeration (CME) project [87] and the

Computer Antivirus Research Organization (CARO) virus naming convention4. CME

is still at an early stage, and the current status of CARO is unclear. However, it is

clear that we are far from uniformity with respect to malware naming schemes, as is

revealed in recent surveys [65, 54].

4See http://www.caro.org/.

161

http://www.caro.org/

Chapter 4: Formal Affordance-based Models of Computer Viruses

4.4.2 Comparisons with Related Work

This chapter is concerned with an application of the formal affordance-based reproduc-

tion models, first presented in Chapter 3, to the specific problem of computer virus

classification. Therefore, the purpose of the following comparisons is not to critically

assess affordance-based reproduction models, which has already been done in the pre-

vious chapter, but rather to critically-assess the classification scheme presented here.

The variety of computer virus classification schemes is fascinating. Adleman classi-

fies computer viruses according to abstract definitions of their behaviour. Bonfante et

al use a functional description of behaviour to classify computer viruses according to

their means of reproduction. Phylogenetic classification arises from the need to group

computer viruses automatically according to their apparent heredity. Spafford presents

a taxonomy of the “evolution” of computer viruses over their short history. Weaver

et al classify worms according to their behaviour, social effects and author motivation.

Industrial classifications are the result of computer virology in the trenches; assump-

tions and decisions about heredity, reproduction method and payload are reflected in

an ad hoc naming system.

Most classifications arise from some insight into the universe of objects being classi-

fied, and therefore the only requirement upon a classification being considered worthy

of the title is that it should have some explanatory power. Therefore, the task of

comparing different computer virus classifications becomes a relative one, as all of

the classifications presented above have some basis in rational thought and have some

explanatory power. Consequently it is, perhaps, difficult to justify the use of one com-

puter virus classification over another. Therefore, we will instead draw qualitative

comparisons between our approach and the other approaches in the literature, with the

intention of illustrating the novelty and insight of our approach.

4.4.2.1 Comparison with Formal Classifications

The approaches taken by Adleman and Bonfante et al are similar in that they are both

based on a specific model of computation — recursive functions. Computer viruses are

defined within the model, and then variants on that class are defined in order to deter-

mine sub-classes. For example, Adleman uses first-order logic to define abstract features

of viruses based on recursive functions, such as contagiousness and pathogenicity, that

are then used as the basis of a classification; Bonfante et al’s use recursive functions

to determine specific virus behaviours, such as companion viruses. Another similar

approach is given in our earlier work [153, 154], in which Abstract State Machines

(themselves a model of computation) are used to define viruses, and then sub-classes

162

4.4 Summary

are defined which satisfy the requirements of being a virus, together with some inter-

esting features (in the form of additional restrictions) which separate them from other

viruses.

These methods contrast sharply with the approach presented in this chapter, which

is based on an algebraic notion of reproduction, in the form of formal reproduction

models. An algebra is simply a set, together with operations on that set, and is analo-

gous to other concepts in computer science, such as “abstract data types” and “objects”

in object-oriented programming. Therefore, formal reproduction models can be seen

as a many-sorted set S (consisting of states, actions, entities and so on), and a set of

operations on that set (such as Aff : S × S → S and ε : S × S → {0, 1}). We do

not base our classification on a single model of computation, but rather specify the

circumstances in which an act of reproduction takes place, e.g., a labelled transition

system which describes how the system evolves over time, or the set of entities that are

present during the reproductive act.

Since it is a fundamental assumption within our models that reproduction has

taken place, our models do not describe the computation involved in a reproductive

process. However, this is the aim of the computability-based classifications, which lay

out the formal computational nature of computer viruses, e.g., the mechanics of their

reproductive behaviour. In contrast, the aim of our approach is to describe formally

the interactions between the computer virus and its environment based on a formal

description of affordance theory, and therefore come to a more “ecological” view of

computer virus reproduction in terms of the reproductive reliance of the computer

virus on external agency.

The phylogenetic approach to classification, particularly as it is described by Gold-

berg et al, makes significant use of formal tools such as algorithmic complexity theory

to describe a possible means of automatic computer virus classification. This approach

is fundamentally different to our approach, as it is based on an observed low-level fea-

ture of computer viruses: that different viruses tend to share similar code blocks, and

these similarities can be used to create algorithmically-generated phylogenetic trees

based on the varying degrees of similarity. Our approach, in contrast, is based upon

a high-level feature of computer viruses: that they are part of an environment, from

which they may receive assistance during the act of reproduction. It is not necessarily

the case that computer viruses must share common code blocks, in fact, it is the case in

certain examples such as Gödel numbering of programs, that there are no shared code

blocks at all. However, it is arguable that our approach to computer virus classification

is applicable to computer viruses programmed in any language, since the language is

not strictly relevant within our reproduction models, as the reproductive process is

163

Chapter 4: Formal Affordance-based Models of Computer Viruses

modelled using a labelled transition system.

4.4.2.2 Comparison with Informal Classifications

Our approach to computer virus classification is formal, and therefore is very different

in implementation to the informal approaches of Spafford, Weaver et al and industry.

However, it may be interesting to compare our approach with these others in terms of

the intention of the classification.

The aim of Spafford’s classification is to question whether computer viruses are a

form of artificial life; the five generations are of increasing complexity, and are suggestive

of an evolutionary process. Weaver et al describe a multi-dimensional classification of

computer worms, incorporating reproductive, payload and social features of various

worms. The authors do not apply their approach to any real-life examples of worms,

and state that “in order to understand the worm threat, it is necessary to understand

the various types of worms, payloads, and attackers.” Therefore, it appears that their

classification is meant as an illustration of the variety of worm behaviours, effects etc.

The classification of computer viruses by anti-virus software vendors is essentially an

ad hoc naming system, and is meant primarily to establish a common, descriptive name

for a recurring threat.

Therefore, the primary intentions of two of the informal classifications are illus-

trative and rhetorical — Spafford is showing the life-like characteristics of computer

viruses, and Weaver et al are showing the wide variety of present-day computer worms.

The primary intention of the third classification is to decide upon names for certain

reproducing programs, so that effective detection methods can be found as quickly as

possible.

The primary intentions of our approach are (i) a practical application of formal

affordance-based reproduction models, i.e., a demonstration of their practical relevance;

(ii) a formal modelling system for computer viruses, so that viruses may be compared

and classified in a formal way; and (iii) an investigation into how different classifications

of the same computer virus can be formed, and how this relates to observable behaviour

of a computer virus. Therefore, our approach differs from the informal approaches not

just in its formality, but also in its motivation and intended application.

4.4.2.3 Classification of Models versus Classification of Computer Viruses

An important distinction between our classification presented in this chapter, and the

related work is that we do not classify computer viruses, but rather models of computer

viruses. In every other approach, a particular computer virus is classified, based on

observation of its characteristics. For instance, Adleman’s classification hinges on the

164

4.4 Summary

observation of a computer virus as contagious (or not) and pathogenic (or not). Bon-

fante et al classify computer viruses using a list of abstract computational behaviours,

expressed using recursive functions, that we can identify real-life viruses as having (or

not). The phylogenetic classifications are essentially algorithmic methods for construct-

ing graphs which display the likely lineage of a computer virus — it’s classification is

therefore its relationship to other nodes on the graph. Spafford classifies computer

viruses by different levels of observed sophistication. Weaver et al classify computer

viruses based on observed characteristics. The industrial classification is essentially

an ad hoc naming scheme, with different classes (e.g., “Worm”) denoting observed

behaviours.

Therefore, it is possible to classify computer viruses directly, or first make a model

of their behaviour which we then classify (as in our approach). The first approach is a

one-step process from computer virus to classification

virus −→ classification (4.1)

whereas the second approach takes two steps — modelling, then classification:

virus −→ model −→ classification (4.2)

Actually, these two approaches are different descriptions of the same classification pro-

cess. In the case where we appear to classify computer viruses directly, classification is

only possible thanks to an implicit model of the virus’s behaviour in the mind of the

classifier. For example, to classify a computer virus using Adleman’s classification, we

must prove that its Turing machine satisfies certain properties. Therefore, we need to

know to which Turing machine(s) a computer virus maps. We might formulate this

as a function m : P → TM , where P is the set of programs in some language and

TM is the set of Turing machines. The function m essentially specifies the syntax and

semantics of a programming language. However, there is no canonical form of m. A

computer virus exists within a state of a real-life computing machine. Even if we have

a formal definition of the syntax and semantics of a programming language, we cannot

be sure that the computing machine executing the virus actually satisfies the formal

specification5. Therefore, there is no canonical function m, and whenever we try to

5This statement might appear to be controversial. It is common in computer science to prove that
a given computer can be proven to satisfy a formal specification. However, this statement is actually
more philosophical: how can we ever be sure that we have an exact formal model of any real-life system?
The best that we can ask of any formal models is that it fits the observed data; however there may be
extremes of circumstance that permit anomalous behaviour, e.g., one can imagine a scenario in which
a non-reproducing program could be made to reproduce if the machine it were running on were struck
by lightning!

165

Chapter 4: Formal Affordance-based Models of Computer Viruses

formulate it, we are simply creating a model of what we think the relationship between

P and TM ought to be. Therefore, the one-step classification shown in (4.1) is the

same as the two-step classification in (4.2) — the only difference is that the modelling

step is implicit.

Therefore, the key difference between our computer virus classification and the

related work is that our modelling step is made explicit. First, an affordance-based

computer virus reproduction model is generated, and then it is classified. The classifi-

cation process is purely formal, as classification is based on the properties of the model,

rather than the properties of the computer virus. Therefore, the potential inaccuracy

of classification is limited to the modelling stage only.

It is possible to take one-step classification systems and turn them into two-step

systems by making the model explicit. For example, in the case of the classification of

Bonfante et al, we could we could establish some procedure Q for converting computer

viruses into recursive functions. Then, classification of the recursive functions could

take place formally and according to the authors’ definitions. The procedure Q would

therefore corresponding to the modelling stage, and the classification would therefore

become a two-step classification system.

Another example of a two-step classification system would be to construct a formal

specification of the operational semantics of a programming language, similar to the

Maude specification of Intel 64 used in Chapter 2. This would effectively give an explicit

mapping from programs to models. For example, the transition rule could be derived

from the state transitions of a Maude reduction corresponding to the execution of the

program. It would be possible to further develop the specification so that automatic

classification would be possible through a representation of a behaviour monitor along

the lines of Section 4.3.4.

4.4.2.4 General Comments on Affordance-based Classification

Intuitively, computer viruses that are classified as unassisted within our classification

are those that are reproductively isolated, i.e., those that do not require the help of

external entities during their reproductive process. Consequently, those classified as

assisted require the help of external entities for their reproduction. Here our approach

is similar to the work of Taylor [142], who makes the distinction between unassisted

and assisted reproduction with respect to artificial life. This similarity is discussed in

more detail in Section 3.7.1.

Our classification of computer viruses is a special case of the construction and

classification of reproduction models from the previous chapter, which places computer

viruses within the broader class of natural and artificial life forms. This relationship

166

4.4 Summary

between computer viruses and other forms of life has been explored by Ludwig [97] and

Spafford [135], in their descriptions of computer viruses as artificial life, and by Cohen’s

treatise [33] on living computer programs. The comparison between computer viruses

and other reproductive systems has resulted in interesting techniques for anti-virus

software such as computer immune systems [83, 134, 70], and in that sense we hope

that the formal relationship between computer viruses and other life forms has been

further demonstrated in this chapter, and could assist in the application of concepts

from the study of natural and artificial life to the problem of malware control. In

addition, we believe our description of computer viruses within a formal theoretical

framework also capable of describing natural and artificial life systems further supports

the ideas of Ludwig, Spafford and Cohen: that computer viruses are not merely a

security problem or a computational curiosity, but a life form in their own right.

167

Chapter 4: Formal Affordance-based Models of Computer Viruses

168

Chapter 5: Conclusion

In Chapter 1 we explained that the structure of this thesis is such that the chapters

are (almost) self-contained, each with their own introduction, literature review and

summary. Therefore, we conclude this thesis by summarising the novel contributions

of each chapter, and by giving a number of directions for future research.

5.1 Novel Contributions

The novel contributions of this thesis are listed in order of presentation:

Chapter 2

• A formal algebraic specification of a subset of the Intel 64 assembly programming

language has been developed. Intel 64 is the processor language of the majority

of personal computers worldwide, and since our specification is general-purpose,

it can be applied to proving properties of programs written in Intel 64.

• The formal algebraic specification of Intel 64 has been shown to be applicable to

the practical problem of metamorphic computer virus detection. The specification

is made executable by using the Maude term rewriting engine, and can be used

for dynamic analysis of metamorphic computer viruses. We showed how it is

possible to prove the equivalence of different metamorphic code fragments using

this approach, and described how this could be applied to metamorphic computer

virus detection.

• Formal definitions of the equivalence and semi-equivalence of programs were de-

veloped, and were used to prove the Equivalence in Context theorem. This theo-

rem states that a semi-equivalent store can be made equivalent through the execu-

tion of an instruction sequence that makes all non-equivalent variables equivalent.

• Equivalence in Context has been shown to be applicable to the practical prob-

lem of detection of metamorphic computer viruses, which can generate syntactic

169

Chapter 5: Conclusion

variants that are semi-equivalent. We have shown how it is possible to apply

Equivalence in Context using static analysis in order to prove the contextual

equivalence of semi-equivalent metamorphic computer virus variants.

Chapter 3

• Gibson’s theory of affordances has been applied to the problem of formal repro-

duction modelling and classification. A reproduction system can be described in

terms of a labelled transition system, with entities (of which the reproducer is one)

in various states. The entities required for a particular action are the entities that

afford that action. The affordance metaphor is useful as it captures notions of

agency and collaboration in the reproductive act, enabling classification as trivial

or non-trivial, assisted or unassisted. We have shown how assisted classification

can be sub-classified further using aspects, which isolate certain actions (e.g., the

payload of a computer virus) and test whether they are assisted or not.

• We have proven that refinements exist only between certain classes of reproduc-

tion models, i.e., the space of formal affordance-based reproduction models is

structured under refinement. In particular, we proved that there are no refine-

ments from non-trivial to trivial models, and there are no refinements to models

that are trivial and unassisted.

• We have proven the Unassisted and Assisted Reproduction Theorems. The

Unassisted Reproduction Theorem says that every affordance-based reproduc-

tion model can be refined by an unassisted reproduction model. The Assisted

Reproduction Theorem says that every non-trivial reproduction model refines an

assisted reproduction model. Together, the two theorems show that for any non-

trivial reproduction model — classified as assisted or unassisted — there is always

another model, related under refinement, that has the opposite classification.

• We have shown that formal affordance-based reproduction models can be used

in the domains of biology, computer virology and artificial life. Such models

can then be classified and refined, e.g., to demonstrate the relationships between

models that have the same reproductive process, but have different classifications.

We have constructed affordance-based reproduction models for biological viruses,

computer viruses and artificial life forms, and have sketched how models might be

constructed for more complex reproduction systems, such as sexual reproduction.

• We have discussed the philosophical implications of our formal affordance-based

reproduction models, including the idea that classification based on assistance

170

5.2 Directions for Future Research

is arbitrary, the idea of reproduction as preservation of information over time

and the relationship between our work and Rosen’s work on the irreducibility of

biological systems and a paradox implicit in the notion of unassisted reproduction.

Chapter 4

• We have applied our formal affordance-based reproduction models to the practical

problem of computer virus modelling and classification. We have shown that

the affordance metaphor is apt within computer virology, as computer viruses

frequently use resources of the host computer in order to reproduce, e.g., the

operating system or a network.

• We have shown how the classification of affordance-based models of computer

viruses as unassisted or assisted mirrors the classification of computer viruses

as undetectable or detectable by behaviour monitors. Different behaviour moni-

tors employ different means of observation of computer virus behaviour. In cases

where a monitor can intercept a communication between a computer virus and

a resource, we can model this resource as a separate entity which affords some

action in the computer virus’s affordance-based reproduction model. In order

to demonstrate this technique, we have constructed models of computer viruses

programmed in a Unix shell script language, Visual Basic script, Java and x86

assembly language, and showed how they can be classified as unassisted or as-

sisted.

• We have shown how the classification of affordance-based computer virus repro-

duction models can be achieved by automatic means, either by static or dynamic

analysis. We gave case studies of how this might be achieved for real-life Vi-

sual Basic script viruses, and discussed the possibility of metrics for further sub-

classification of assisted models. In addition, we showed that these techniques

can be implemented using well-known string pattern matching and behaviour

monitoring techniques.

5.2 Directions for Future Research

The work in this thesis has highlighted a number of possible avenues for future research.

We describe these as follows.

171

Chapter 5: Conclusion

5.2.1 Complexity of Detecting Metamorphic Computer Viruses

In Chapter 2 we gave two different ways to detect metamorphic computer viruses using

equivalence checking: equivalence in context and dynamic analysis using the Maude

specification of Intel 64. However, the emphasis of this chapter was on establishing the

methods for detection and providing illustrative examples. For both detection methods

it would be desirable to extend this investigation to include algorithms for implementing

these procedures. An obvious benefit would be an analysis of the computational time

and space complexity of the algorithms.

In the case of equivalence in context, which is based on formal definitions and

results, the development of an algorithm to prove equivalence in context — one which

takes two semi-equivalent stores s1 ≡W s2 and an instruction sequence i (of length

n) that equalises them — would seem to be straightforward and natural. One has to

define an iterative (or recursive) process in which the first statement i0 in i is tested

to see whether Vin(i0) ⊆ W . If this is the case, then Vout(i0) is added to W , and the

process is repeated for i1, and so on. The iterative procedure would have to execute

n times in the worst case. On each iteration, a subset-checking procedure and a set

union procedure would need to be implemented. We could implement these operations

using hash tables for the sets, which have an average-case time complexity of O(1)

for insertion, search and deletion operations [34]. In order to check that A ⊆ B, a

hash table search operation would have to execute |A| times, and therefore a subset-

checking procedure for a subset A would have average-case time complexity of O(|A|).

To perform A ∪ B using a hash table insertion operation, each element in the smaller

hash table would have to be added to the other hash table, meaning an average-case

time complexity of O(|A|) (assuming A to be the smaller set). Therefore we would

have an algorithm that iterates n times, and on each iteration performs two other

operations that have a linear average-time complexity. Therefore, we might expect the

overall time complexity of the equivalence in context algorithm to be no more than

O(n2), although a formal proof would be needed. The algorithmic space complexity

would be expected to be low, as the only space requirement for the iterative algorithm

is the set of equivalent variables W , which needs to be no larger than the set of variables

used by s1, s2 and i.

In the case of the equivalence checking using the Maude specification of Intel 64,

a formal algorithmic treatment (as described for the equivalence in context algorithm

above) would be less desirable for a number of reasons. Firstly, the algorithmic com-

plexity would be dependent on the implementation of the Maude term rewriting engine.

Although the implementation details are available, they may change in subsequent ver-

sions of Maude which would render inaccurate any formal analysis. Secondly, the al-

172

5.2 Directions for Future Research

gorithmic complexity would also depend upon the term rewriting system implemented

within the Maude specification of Intel 64 (represented by the equations and condi-

tional equations). Therefore, any changes to the specification would render any formal

results inaccurate. Perhaps the best investigation into the time and space requirements

of this form of equivalence checking would be empirical, i.e., a large set of typical inputs

of varying size would be prepared and presented to the Maude specification and term

rewriting engine for processing. The time/space taken could be measured for each in-

put, and a scatter graph of program size versus time/space taken could be drawn. The

result would suggest the magnitude of the time/space complexity (e.g., constant, linear,

polynomial, exponential, etc.). For the simple experiments using the Maude specifi-

cation in Chapter 2, the execution time was on the order of milliseconds; however,

an empirical analysis would provide a more convincing account of the computational

demands of this approach.

5.2.2 Further Detection of Metamorphic Computer Viruses

So far a subset of the Intel 64 instruction set has been specified using Maude, but there

is no reason why the entire instruction set could not be implemented, as several impera-

tive programming languages have been specified using similar approaches [104, 60, 58].

A full specification of Intel 64 would enable application of the detection techniques

described in Chapter 2 to computer viruses that use instructions beyond the subset

of Intel 64 specified here (see Appendix A for the Maude specification). The tech-

nique of (semi-)equivalence proof has been applied to two of the nine computer virus

code metamorphosis types given in Section 2.2.1: equivalent sequence replacement and

arithmetical/Boolean metamorphism. A practical extension of this work would be to

extend and test the techniques shown here for other types of metamorphism. In Sec-

tion 2.5 a method for proving equivalence in context was given. An extension of this

would be to find further means of proving equivalence in context, which would aid the

detection of metamorphic computer viruses that employ semi-equivalence based code

metamorphosis.

An obvious further application of the methods for computer virus detection de-

scribed in Chapter 2 is to combine them with other means of metamorphic computer

virus detection. For instance, the formally-verified equivalent code library described in

Section 2.8.2.1 may not always result in reduction of every generation of a metamor-

phic computer virus to a normal form. However, the overall syntactic variance of the

set of all generations may be significantly reduced, so that another technique may be

used to enable detection. For instance, the neural network-based approach of Yoo et

al (described in Section 2.9.1.5) relies on the identification of similar code structures,

173

Chapter 5: Conclusion

and therefore may be assisted by an equivalent code library.

An advantage of the Maude specification of Intel 64 described in Chapter 2 is its

flexibility. We performed simple reductions to prove equivalence of metamorphic code,

one of the most straightforward proofs possible for a specification of a programming

language in Maude. However, there are many more techniques that can be used, such

as inductive proofs of loop behaviour or proofs of program properties [58]. In addition,

there are several automated theorem proving tools that can be used with Maude, in-

cluding a model checker and inductive theorem prover [105]. These tools can be used

in concert with the Intel 64 specification to prove properties of programs written in the

language; an obvious useful application would be to prove that an anti-virus program

can detect a given set of viruses. This would provide an added level of assurance to

the users of anti-virus software: not only do they have anti-virus software installed on

their systems, but it is proven formally to work.

An additional use of Maude’s built-in model checker is described in the next section

on detection of virtualization-based malware.

5.2.3 Detection of Virtualization by Metamorphic Code Generation

Virtual machine-based rootkits can be used to force the user to use an operating sys-

tem that executes within a virtual machine [126, 84, 127, 52]. The advantages to the

potential attacker are obvious; the user would be oblivious to any malicious programs

executing outside the virtual machine. Rutkowska describes an approach to detection

of virtualized malware from within the virtualized operating system, based on the exe-

cution of an Intel 64 assembly language instruction called sidt x [126]. When executed,

this instruction stores the contents of the interrupt descriptor table register into the

destination operand x. The value of x varies depending on whether the sidt instruc-

tion has been executed inside or outside a virtual machine, and therefore detection is

possible. This method is called Red Pill.

However, this detection method is not always guaranteed to work, as the user’s

interaction with the operating system can be controlled and manipulated in order to

avoid detection using methods like Red Pill. King et al describe a counter-measure

to Red Pill based on emulation [84]. The virtual machine monitor (VMM), which

controls execution of the virtual machine, detects when the Red Pill executable is

being loaded into memory, and sets a breakpoint to trap the execution of sidt. When

the breakpoint is reached, the VMM will emulate the instruction, setting the value of

the destination operand of sidt to a value not indicating detection. The authors note

that this detection counter-measure could be defeated by a program R that generates

the sidt instruction dynamically.

174

5.2 Directions for Future Research

At this point the writers of the malware have two options: they can re-write the

virtualization-based malware so that it can detect R, as well as Red Pill, by static

analysis. Alternatively, they can trace the execution of programs in order to detect by

dynamic analysis any occurrence of Red Pill. King et al note that the latter could be

computationally expensive, adding overhead which might result in detection by timing

methods (see, e.g., [52]).

Suppose that the former option were chosen. Then, all the malware writers need do

in order to avoid detection of their malware is to adjust their program to detect R′ as

well as R and Red Pill. Therefore, from the perspective of the writers of the Red Pill

program, a means of automatic generation of programs that have the same behaviour

as Red Pill would be desirable. In other words, we would like to use a metamorphic

version of Red Pill, that changes its syntax at run-time in order to evade detection.

Clearly, metamorphic engines as seen in metamorphic computer viruses could be used,

but they are not reliable, in that the syntactic variants generated are not guaranteed to

preserve the semantics of the original program. Therefore, we propose a solution to this

problem based on our formal description of Intel 64 assembly language, which could be

employed as a means of generating Red Pill variants before or during run-time.

As was discussed in Section 2.4, the Maude specification of Intel 64 denotes a term

rewriting system. The usual application of such a system is to apply equations and

rewrite rules in order to reduce terms to some terminal form, i.e., to rewrite terms until

they can no longer be rewritten. However, it is also possible to perform a search of the

rewriting space of a term rewriting system in order to determine whether it is possible

to reduce one term to another, and if there are non-deterministic aspects to the term

rewriting system, whether there are multiple ways of performing such a reduction. It is

also possible to test for some conditional value, and find all rewriting routes that lead

to a term satisfying that condition. In this way, Maude can be used for model checking.

Using the Maude specification of Intel 64, it is possible to rewrite a term such as

S[[eax]], which denotes the value of eax in some store S, using a variety of rewrite

rules, and check using a breadth-first search of the term rewriting system whether a

condition such as S[[eax]] = "sidt" ever becomes true, which says that the value

of eax in some store S is equal to "sidt". In other words, it is possible to create a

term rewriting system in Maude that constructs programs based on rewrite rules, and

search the rewriting space for constructed programs that are satisfy the requirement

that "sidt" is stored in some variable. Figure 5.1 shows such a term rewriting system

that generates four ways of constructing a program that satisfies the condition that

S[[eax]] = "sidt". Therefore, it is possible to create a metamorphic code engine

based on our formal specification of Intel 64 in Maude.

175

Chapter 5: Conclusion

rl [1] : S[[eax]] => S ; mov ebx, "sidt" [[eax]] .

rl [2] : S[[eax]] => S ; mov eax, ebx [[eax]] .

rl [3] : S[[eax]] => S ; mov ecx, ebx [[eax]] .

rl [4] : S[[eax]] => S ; mov eax, ecx [[eax]] .

Let the end condition be s[[eax]] = "sidt".
Then, apply any of the following to reach the end condition from s[[eax]]:

(1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 3, 4), (1, 3, 3, 4), (1, 3, . . . , 3, 4).

Figure 5.1: A metamorphic engine based on the Maude specification of Intel 64. The
four lines beginning with rl are rewrite rules that construct programs by appending an
instruction to an instruction sequence. The search of the rewriting space then reveals
sequences of rewrite rule applications that result in programs that assign "sidt" to
eax.

The previous example shows how we can automatically generate programs that

assign the number corresponding to the opcode of sidt x to some variable, e.g., register

eax. Therefore this technique could be used to generate automatically syntactically-

mutated forms of a Red Pill program in order to evade detection of the Red Pill program

by the VMM. This approach is preferable to other, less formal, means of metamorphism

(such as using a metamorphic engine from a computer virus) because we can use the

Maude specification of Intel 64 to guarantee that any metamorphic code generated

satisfies the requirements of Red Pill.

5.2.4 Modelling Reproduction at Different Abstraction Levels

In Example 8 from Section 3.5.1 we showed how a reproduction model of a copier

computer virus which was classified as assisted could be refined to another model in

which the classification was unassisted. This was a demonstration of the Unassisted

Reproduction Theorem, which says that such a refinement exists for any affordance-

based reproduction model. As well as being an interesting feature of affordance-based

models, this may have an interesting philosophical implication. For example, in the

case of the copier computer virus, we achieved the shift from assisted to unassisted

classification by specifying a function h which maps all entities in the assisted model

Mcv to the reproducer, thus making the classification ofM#
cv unassisted. In other words,

we have an entity in M#
cv which is, notionally, the conglomeration of all of the entities

that afforded actions to the reproducer in Mcv. This raises the question of whether we

should consider the computer virus to be the reproducer, or the conglomeration of the

copier computer virus with the assisting entities in its environment.

In their work on the philosophy of biology, O’Malley & Dupré [109] describe similar

176

5.2 Directions for Future Research

ontological problems when defining a biological individual. They state that it is typical

within microbiology to identify a single cell of a prokaryote as an individual; however,

many communities of microbes display properties commonly associated with organisms,

including coordination of metabolic process, environmental modification and autolysis

(“cell suicide”) for the benefit of the community. There is growing evidence in the

literature of such a holistic notion of biological individuality. For instance, in their

paper on the role of microorganisms in corals, Rosenberg et al describe the relationship

between organisms and symbiotic microorganisms (“symbionts”), and suggest a new

form of evolution in terms of “hologenetics”:

“. . . the genome of the host can act in consortium with the genomes

of the associated symbiotic microorganisms to create a hologenome. This

hologenome — given the diversity and fast growth rates of microorganisms

— can change more rapidly than the host genome alone, thereby conferring

greater adaptive potential to the combined holobiont organism.

[This] leads us to propose a hologenome theory of evolution: the holo-

biont with its hologenome should be considered as the unit of natural se-

lection in evolution, and microbial symbionts have an important role in

adaptation and evolution of higher organisms. Therefore, microorganisms

are essential not only in the health and disease of individual higher organ-

isms, but they also are a significant factor in species survival and evolution.

This hologenome theory of evolution is derived primarily from an un-

derstanding of the biology of corals. However, a large body of data exists in

the literature relating to many eukaryotic organisms and their interaction

with symbiotic microorganisms — a literature that could be re-evaluated in

light of this theory.” [125]

In other words, hologenetics takes the view that the evolving biological individual

is not the organism, but the organism in cohort with its symbionts. Rosenberg et al

describe a number of different ways in which the symbionts assist the organism, and vice

versa. In terms of affordance-based reproduction models, we might model the organism

and the symbiont with two reproduction models, with the organism as the reproducer

and the symbiont as an assisting entity in one, and the symbiont as the reproducer

and the organism as an assisting entity in the other. We are then at a similar point

to Section 3.7.2.5, in which we described the male and female as reproducers in two

different models, one in which the male reproduces and the female assists, and the other

in which the opposite happens.

Clearly, this interaction between two different symbiotic reproducers can be mod-

elled using affordance-based models. It is possible that the refinement from an assisted

177

Chapter 5: Conclusion

Figure 5.2: Ontological shifts from a cell, to a community of cells, to an organism, to a
community of organisms, to a society (in this case, the University of Liverpool). Shifts
2 and 4 can be modelled at present using refinements; shifts 1 and 3 are left for future
work.

model to an unassisted model as described above, which depends upon the conglomer-

ation of entities involved in the reproductive process, is similar to the ontological shift

from the näıve notion of individual to the community individual. In other words, we

could apply the Unassisted Reproduction Theorem to the both the male and female

reproduction models, resulting in a refinement to the same reproduction model in which

the conglomerate entity is the male and female together. We could do the same thing

with the organism and the symbiont reproduction models.

Similar ontological shifts can be seen in the field of economics, where it has been

posited that firms (essentially a community of human beings with a common purpose)

are reproducers [99]. Therefore, we might consider the refinement process, during

which collaborative reproductive entities are conglomerated, to be a model for onto-

logical shifts of this kind. In Figure 5.2 we give a schematic illustration of a series of

ontological shifts, in which several entities are conglomerated to a single entity through

a refinement between reproduction models. However, there is another relationship be-

tween models that would be required to fully describe the progression between the

models in Figure 5.2. The model in which a single individual, e.g., a cell, is present is

obviously related to the model where a number of individuals of the same species, e.g.,

a number of cells, are present. In Figure 5.2 these ontological shifts are represented in

arrows 1 and 3. At present we can describe arrows 2 and 4 using refinements between

models, but there is as yet no way to model the relationship described by arrows 1 and

3. This is obviously a subject for future research1.

This formal description of ontological shifts may be of interest to those interested

1Indeed, our latest research in this area concerns formal component-based models of reproduc-
tion [157], in which we can describe how different components of a whole can be related. This could
possibly be applied to model the relationship described by arrows 1 and 3, in which an entity becomes
a community of similar entities.

178

5.2 Directions for Future Research

in relating ontologies (e.g., [8, 9]), as the formal affordance-based reproduction mod-

els in this chapter provide a formal framework for describing ontological shifts in the

perception of reproduction and life-like systems.

5.2.5 Metrics for Reliance on External Agency

In Section 4.3.5 we showed how affordance-based computer virus reproduction models

can be compared using metrics of reliance on external agency. However there may

be further opportunities to create metrics to compare assisted reproduction models in

general, based on other factors. For example, if we see the act of reproduction as a

computational process of a certain minimal complexity, then if the actions that a re-

producer affords itself together are less than the complexity of the whole reproductive

process, then there must necessarily be some other (external) entity that compensates

for this. Therefore, when comparing two assisted reproduction models that require

a similar environment (e.g., two computer viruses), we can compare their reproduc-

tive reliance on external agency by comparing the complexity of those reproductive

actions that are afforded to the computer viruses, or those that the computer viruses

afford themselves. For example, we could assume that the more complex a particular

virus’s self-afforded actions, the less the reliance on external agency. Of course, this

presupposes the existence of some level of abstraction at which we can compare the

complexity of actions, but in several cases, such as computer viruses, Tierran organisms,

cellular automaton reproducers, etc., such a comparison would seem possible. Different

methods of complexity could be used, e.g., space/time complexity, or the Kolmogorov

complexity of the reproducer itself.

There is also empirical evidence of differing degrees of reliance on external agency

with respect to biological viruses. It is known that, “[viruses] with large genomes

depend less on host functions than those with small genomes” [66]. This effectively

states that the information content in the self-description (genome) is related to the

reliance on external agency (the host cell). Another possible extension of this work

would be to use the methods described above to formalise this statement within our

ontology.

5.2.6 Strategies for Reproduction

In December 2000, a relatively unprolific virus on the Windows 32-bit platform was

able to infect executable files containing prolific network worms [138]. The destructive

payload of the virus combined with the infectiousness of the worms created dangerous

hybrids that were not predicted by the vendors of anti-malware software. These hybrids

179

Chapter 5: Conclusion

were an emergent property of a complex “ecology” of reproducers, in which reproduction

processes could overlap.

A useful extension of this work would be to be able to analyse these ecologies of

reproducers, i.e., systems where more than one reproducer is present. Such ecologies

could be constructed using affordances common between entities, for example, a bac-

terium might afford a site of infection for a bacteriophage virus, without necessarily

specifying which virus might infect the bacterium. The labelled transition systems of

the different reproductive processes could be combined using techniques such as those

developed in process algebra [6]. In real-life ecologies, reproducers are capable of inter-

esting behaviours such as crossing a species gap (e.g, biological viruses), or spontaneous

virus–worm hybridisation (see above). In being able to build models of ecologies of re-

producers by combining their models in a formal way, we could begin to analyse and

predict interesting emergent properties of multi-reproducer systems.

5.2.7 Advanced Metrics for Assisted Computer Virus Classification

In Section 4.3.5 we showed how using a simple metric we could compare the reliance

on external entities of two viruses written in Visual Basic Script. It should also be

possible to develop more advanced metrics for comparing viruses with assisted classifi-

cation. For example, a certain sequence of actions which require external entities may

flag a given viral behaviour with a certain level of certainty. Therefore it would seem

logical to incorporate this into a weighted metric that reflects the particular character-

istics of these viruses. Different metrics could be employed for different languages, if

different methods of behaviour monitoring are used for Visual Basic Script and Win32

executables, for example.

Following on from the discussion above, another possible application of our approach

is towards the assessment of anti-virus behaviour monitoring software via affordance-

based models. There are some similarities between our approach and the recent work by

Filiol et al [46] on the evaluation of behavioural detection strategies, particularly in the

use of abstract actions in reasoning about viral behaviour. Also, the use of behavioural

detection hypotheses bears a resemblance to our proposed anti-virus ontologies. In

future we would like to explore this relationship further, perhaps by generating a set

of benchmarks based on our ontology and classification, similar to those given by Filiol

et al.

Recent work by Bonfante et al [14] discusses classification of computer viruses using

recursion theorems, in which a notion of externality is given through formal definitions

of different types of viral behaviour, e.g., companion viruses and ecto-symbiotes that

require the help of a external entities, such as the files they infect. An obvious extension

180

5.2 Directions for Future Research

of this work would be to work towards a description of affordance-based classification of

computer viruses using recursion theorems, and conversely, a description of recursion-

based classification in terms of formal affordance theory.

5.2.8 Evaluation of Anti-virus Techniques

In Chapter 4 we described how the capabilities of different anti-virus behaviour moni-

tors correspond to different classifications of the same computer virus as unassisted or

assisted. For example, suppose a computer virus uses the operating system to write to

files, and one behaviour monitor is able to discern communication between the computer

virus and the operating system. In this case it is natural to classify the computer virus

as assisted, as the behaviour monitor is able to view the assisted act of reproduction.

However, if the behaviour monitor was unable to detect any communication between

the computer virus and the operating system, then a classification of the computer

virus as unassisted would be more natural, as the act of reproduction is apparently

unassisted. Therefore, the most capable behaviour monitor would be that which was

able to view every act of every computer virus’s reproduction, from handling data in

memory to writing to the disk to sending information over the Internet. This omni-

scient monitor would result in every computer virus being classified as assisted. The

least capable behaviour monitor, in constrast, would be unable to discern any of the

actions of the computer virus’s reproduction, and would result in a classification of

every computer virus as unassisted. In between these two extremes there is a spectrum

of behaviour monitor capabilities resulting in different structures of the set of computer

viruses as a result of their differing capabilities of classification.

However, we can go beyond the classifications of Chapter 4 if we recall the work

from Chapter 3 on refinements of affordance-based models. Refinements allow us to

relate different models of different abstraction levels. For instance, we may view a

reproductive path in a number of different ways, e.g.:

s1
a17−→ s2

a27−→ s3
a37−→ s4

a47−→ s5
a57−→ s6 (5.1)

s
a

7−→ s, s′ (5.2)

where (5.1) is a detailed reproductive path, and (5.2) is a less detailed (i.e., more

abstract) reproductive path. We could define a refinement between reproduction models

using (5.1) and (5.2) as the paths by mapping s1, . . . , s5 to s, s6 to s′ and a1, . . . , a5 to a.

Alternatively, we may wish to the view the entities at different abstraction levels, e.g.,

Ent = {v, OS} for the case where there is a computer virus v and an operating system

OS, or Ent = {v + OS} where we conflate the virus and its environment, resulting in

181

Chapter 5: Conclusion

the conglomerate entity v + OS.

If we think of a behaviour monitor as viewing the reproductive process of a computer

virus at a set level of abstraction, then we can start to relate behaviour monitors in

terms of refinements. For example, a reproductive path of a computer virus might be

as follows:

s1
a17−→ s2

a27−→ s3
a37−→ s4

a47−→ s5
a57−→ s6

However, suppose a given behaviour monitor B can only identify actions a2, a4, and

therefore the reproductive path appears to be

s1
a27−→ t1

a47−→ s6

from the perspective of B. Furthermore, there may be another behaviour monitor B′

that is even less capable, and can only detect action a2. The resulting reproductive

path will appear to be

s1
a27−→ s6 .

We can therefore see the three transition systems as views of the same reproductive

process at different levels of abstraction. There is another interesting connection with

the entities, as in Chapter 4 we described how less capable behaviour monitors are able

to view a smaller number of assisting entities. Therefore there could be five assisting

entities in the original model, one corresponding to each of the five actions. However,

B is only able top view actions a2 and a4, and so it makes sense only to include the two

corresponding entities in its model. Likewise, for the model of B′ there would be only

one assisting entity. The case where there are no assisting entities would correspond

naturally to the case where behaviour monitoring is turned off.

Furthermore, we can relate these refinements to the Maude specification of Intel

64 presented in Chapter 2. The Maude specification can be used an an interpreter for

Intel 64. When a computer virus is executed using this interpreter, the resulting state

transition system is detailed, and corresponds to the the situation in which the most

capable behaviour monitor is able to witness every state transition in the execution

of any program. In contrast, less capable behaviour monitors are only able to discern

a fraction of all of the actions performed; the result is a “partial” transition system

limited to only those actions visible. The least capable behaviour monitors are those

which can discern no actions. If the behaviour monitor knows that the computer virus

has reproduced, then the resulting transition system would be minimal, e.g., s
a

7−→ s’.

In the case where reproduction cannot be established, the transition system could even

be empty (i.e., 7−→ = ∅).

182

5.2 Directions for Future Research

5.2.9 Affordance-based Models and Multi-Reproducers

As we described in Chapters 3 and 4, it is possible to model and classify a variety of

reproductive systems using affordance-based models. These models are ecological in

nature, and provide a way of describing the reproductive process of a reproducer, as

well as the entities in its environment which assist in the various stages of reproduction.

An interesting extension to this work might be a formalisation of what might be termed

multi-reproducers. Multi-reproducers are sets of entities that assist each other in the

reproduction of that set. This kind of reproduction can be seen in several places,

including k-ary malware [44], autocatalytic sets [82] and reproducing robots such as

those developed recently at Cornell University [170].

Filiol describes k-ary malware, which are systems of k computer programs which

are able to mutually reproduce [44]. k-ary malware are particularly difficult to detect,

as each program ki is not individually reproducing, but rather acts in concert with

the other k − 1 programs in mutual reproduction. Autocatalytic sets are somewhat

similar. Kauffman [82] describes these as sets of molecules in which each molecule’s

production is catalysed by some other molecule(s) in the set. Therefore, these sets

constitute reproductive wholes, in which the set is the reproducer. Another example

of multi-reproduction is the Cornell University reproducing robots [170], in which a set

of cubic robots is able to reproduce itself using other cubic robots lying around in its

environment (see Figure 5.3).

Each of these systems could be represented by an affordance-based model in which

the set itself is the reproducer. However, we could also think of each set of size n in

terms of n reproduction models corresponding to the members of the set, in which each

member is assisted in its reproduction by other members of the set, which appear in

the model as entities. It seems likely that this would be possible using the existing

formalisation of affordance-based models. However, an interesting question arises: how

do we relate the model in which the set is the reproducer with the set of models in

which the components are the reproducers? It may be possible to relate each component

model with the set model using a construction along the lines of Definition 12 (p. 83),

in which the component and its assisting entities are mapped to the reproducer in the

set model. However, is there any way to relate the component models together?

It may be that this problem is a special case of the concerns described in Sec-

tion 5.2.4, but further investigation is required to determine this.

183

Chapter 5: Conclusion

Figure 5.3: Reproducing robots developed at Cornell University by Zykov, Mytilinaios,
Adams, and Lipson (reproduced with permission) [170]. Each cube is a robot. The
4-module conglomerate robot in the top-left frame moves through a variety of configu-
rations, collecting other cubic robots from its environment (encircled in red), in order
to create a copy of itself, visible in the bottom-right frame.

184

Appendix A: Intel 64 Specification

This appendix contains the Maude specification of a 10–instruction subset of the Intel

64 assembly programming language instruction set. These specifications were derived

from the informal descriptions in the official Intel literature [75].

Below is a listing of the Maude functional modules I-64-SYNTAX, and I-64-SEMAN-

TICS, which specify the syntax and semantics of the subset of the Intel 64 assembly

programming language. These modules are the basis for all of the Intel 64 Maude

reduction proofs in Chapter 2.

Maude Specification of Intel 64

*** i64.maude

*** Specification of a subset of the Intel 64 instruction set:

*** {MOV, ADD, SUB, TEST, XOR, AND, OR, PUSH, POP, NOP}.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** This module defines the syntax of a subset of I-64.

fmod I-64-SYNTAX is

protecting INT .

sorts Variable Expression Stack EInt .

sorts Instruction InstructionSequence .

subsort Instruction < InstructionSequence .

subsorts Variable EInt < Expression .

subsort Int < EInt .

op dadd_,_ : Variable Expression -> Instruction [prec 20] .

op dsub_,_ : Variable Expression -> Instruction [prec 20] .

*** I-64 instructions

op mov_,_ : Variable Expression -> Instruction [prec 20] .

185

Appendix A: Intel 64 Specification

op add_,_ : Variable Expression -> Instruction [prec 20] .

op sub_,_ : Variable Expression -> Instruction [prec 20] .

op nop : -> Instruction .

op push_ : Expression -> Instruction [prec 20] .

op pop_ : Variable -> Instruction [prec 20] .

op and_,_ : Variable Expression -> Instruction [prec 20] .

op or_,_ : Variable Expression -> Instruction [prec 20] .

op xor_,_ : Variable Expression -> Instruction [prec 20] .

op test_,_ : Variable Expression -> Instruction [prec 20] .

*** helper operations

op stackPush : Expression Stack -> Stack .

op stackPop : Stack -> Stack .

op stackTop : Stack -> EInt .

op _next_ : EInt Stack -> Stack [prec 15] .

op stackBase : -> Stack .

op msb : EInt -> EInt .

op isZero : Expression -> EInt .

op isZero : EInt -> EInt .

op parity : EInt -> EInt .

*** error messages

op emptyStackError1 : -> Stack .

op emptyStackError2 : -> EInt .

*** I-64 registers

ops eax ebx ecx edx ebp esp esi edi ip : -> Variable .

*** I-64 EFLAGS register

ops cf of sf af zf pf : -> Variable .

*** equality operation

op _is_ : EInt EInt -> Bool .

op _is_ : Stack Stack -> Bool .

*** extending the Int sort to include "undef"

op undef : -> EInt .

*** overloaded Boolean operations - these should be in proof scripts

*** but OBJ3 v.2.0 won’t allow it

op _band_ : EInt EInt -> EInt [prec 35] .

op _bor_ : EInt EInt -> EInt [prec 35] .

186

endfm

*** This module defines the semantics of the I-64 instructions

*** whose syntax is defined in I-64-SYNTAX.

fmod I-64-SEMANTICS is

protecting I-64-SYNTAX .

sort Store .

*** stores

ops s : -> Store .

op initial : -> Store .

*** operators for defining the semantics of I-64

op _[[_]] : Store Expression -> EInt [prec 30] .

op _[[stack]] : Store -> Stack [prec 30] .

op _;_ : Store Instruction -> Store [prec 25] .

op _;_ : InstructionSequence InstructionSequence ->

InstructionSequence [gather (E e) prec 26] .

*** variables for rewriting rules

vars S S1 S2 S3 : Store .

vars I I1 I2 I3 : EInt .

vars INT INT1 INT2 : Int .

vars V V1 V2 V3 : Variable .

vars E E1 E2 E3 : Expression .

vars ST ST1 ST2 : Stack .

vars P1 P2 : InstructionSequence .

*** evaluation of instruction sequences

eq S ; (P1 ; P2) = (S ; P1) ; P2 .

*** _is_ semantics

eq I1 is I2 = (I1 == I2) .

eq ST1 is ST2 = (ST1 == ST2) .

*** the value of any integer in a store is the integer itself

eq S[[I]] = I .

*** initial values of variables and the stack

187

Appendix A: Intel 64 Specification

eq initial[[stack]] = stackBase .

ceq initial[[V]] = undef

if V =/= ip .

eq initial[[ip]] = 0 .

*** Axioms to deal with static analysis of primitive

*** operators such as +, -, |, &, xor .

eq I | I = I .

eq I & I = I .

eq (I1 + I2) is (I3 + I2) = I1 is I3 .

eq (I1 + I2) is (I1 + I2) = true .

eq (I1 - I2) is (I1 - I2) = true .

eq (I1 | I2) is (I1 | I2) = true .

eq (I & S1[[V1]]) is (I & S2[[V2]]) = S1[[V1]] is S2[[V2]] .

eq isZero(I1 & I2) is isZero(I1 & I2) = true .

eq parity(I1 & I2) is parity(I1 & I2) = true .

eq msb(I1 & I2) is msb(I1 & I2) = true .

eq isZero(I1 | I2) is isZero(I1 | I2) = true .

eq parity(I1 | I2) is parity(I1 | I2) = true .

eq msb(I1 xor I2) is msb(I1 xor I2) = true .

eq isZero(I1 xor I2) is isZero(I1 xor I2) = true .

eq parity(I1 xor I2) is parity(I1 xor I2) = true .

eq msb(I1 | I2) is msb(I1 | I2) = true .

eq (I1 xor I2) is (I1 xor I2) = true .

*** I-64 instruction semantics

eq S ; and V,E [[V]] = S[[V]] & S[[E]] .

ceq S ; and V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; and V,E [[stack]] = S[[stack]] .

eq S ; and V,E [[ip]] = S[[ip]] + 1 .

eq S ; and V,E [[sf]] = msb(S[[V]] & S[[E]]) .

eq S ; and V,E [[zf]] = isZero(S[[V]] & S[[E]]) .

eq S ; and V,E [[pf]] = parity(S[[V]] & S[[E]]) .

eq S ; and V,E [[cf]] = 0 .

188

eq S ; and V,E [[of]] = 0 .

eq S ; or V,E [[V]] = S[[V]] | S[[E]] .

ceq S ; or V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; or V,E [[stack]] = S[[stack]] .

eq S ; or V,E [[ip]] = S[[ip]] + 1 .

eq S ; or V,E [[sf]] = msb(S[[V]] | S[[E]]) .

eq S ; or V,E [[zf]] = isZero(S[[V]] | S[[E]]) .

eq S ; or V,E [[pf]] = parity(S[[V]] | S[[E]]) .

eq S ; or V,E [[cf]] = 0 .

eq S ; or V,E [[of]] = 0 .

eq S ; xor V,E [[V]] = S[[V]] xor S[[E]] .

ceq S ; xor V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; xor V,E [[stack]] = S[[stack]] .

eq S ; xor V,E [[ip]] = S[[ip]] + 1 .

eq S ; xor V,E [[sf]] = msb(S[[V]] xor S[[E]]) .

eq S ; xor V,E [[zf]] = isZero(S[[V]] xor S[[E]]) .

eq S ; xor V,E [[pf]] = parity(S[[V]] xor S[[E]]) .

eq S ; xor V,E [[cf]] = 0 .

eq S ; xor V,E [[of]] = 0 .

eq S ; test V,E [[V]] = S[[V]] .

ceq S ; test V1,E [[V2]] = S[[V2]]

if V2 =/= ip and V2 =/= sf and V2 =/= zf

and V2 =/= pf and V2 =/= cf and V2 =/= of .

eq S ; test V,E [[stack]] = S[[stack]] .

eq S ; test V,E [[ip]] = S[[ip]] + 1 .

eq S ; test V,E [[sf]] = msb(S[[V]] & S[[E]]) .

eq S ; test V,E [[zf]] = isZero(S[[V]] & S[[E]]) .

eq S ; test V,E [[pf]] = parity(S[[V]] & S[[E]]) .

eq S ; test V,E [[cf]] = 0 .

eq S ; test V,E [[of]] = 0 .

189

Appendix A: Intel 64 Specification

eq S ; mov V,E [[V]] = S[[E]] .

ceq S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; mov V,E [[stack]] = S[[stack]] .

eq S ; mov V,E [[ip]] = S[[ip]] + 1 .

eq S ; add V,E [[V]] = (S[[V]] + S[[E]]) .

ceq S ; add V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; add V,E [[stack]] = S[[stack]] .

eq S ; add V,E [[ip]] = S[[ip]] + 1 .

*** special version of add ("dynamic add") that keeps

*** results of additions within I-64 limits (2^32-1).

eq S ; dadd V,E [[V]] = (S[[V]] + S[[E]]) & 4294967295 .

ceq S ; dadd V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; dadd V,E [[stack]] = S[[stack]] .

eq S ; dadd V,E [[ip]] = S[[ip]] + 1 .

eq S ; sub V,E [[V]] = (S[[V]] - S[[E]]) .

ceq S ; sub V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; sub V,E [[stack]] = S[[stack]] .

eq S ; sub V,E [[ip]] = S[[ip]] + 1 .

*** special version of add ("dynamic sub") that keeps

*** results of additions within I-64 limits (2^32-1).

eq S ; dsub V,E [[V]] = (S[[V]] - S[[E]]) & 4294967295 .

ceq S ; dsub V1, E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; dsub V,E [[stack]] = S[[stack]] .

eq S ; dsub V,E [[ip]] = S[[ip]] + 1 .

eq S ; push E [[stack]] = stackPush(S[[E]],S[[stack]]) .

ceq S ; push E [[V]] = S[[V]]

190

if V =/= ip .

eq S ; push E [[ip]] = S[[ip]] + 1 .

eq S ; pop V [[stack]] = stackPop(S[[stack]]) .

eq S ; pop V [[V]] = stackTop(S[[stack]]) .

ceq S ; pop V1 [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip .

eq S ; pop V [[ip]] = S[[ip]] + 1 .

ceq S ; nop [[V]] = S[[V]]

if V =/= ip .

eq S ; nop [[stack]] = S[[stack]] .

eq S ; nop [[ip]] = S[[ip]] + 1 .

*** Stack helper operations semantics

eq stackPush(I,ST) = I next ST .

eq stackPop(I next ST) = ST .

eq stackPop(stackBase) = emptyStackError1 .

eq stackTop(I next ST) = I .

eq stackTop(stackBase) = emptyStackError2 .

endfm

Proof from Example 1, p. 29

*** vout.maude

*** Vout proofs for mov v1, v2. Use with i64.maude.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

fmod VOUT is

pr I-64-SEMANTICS .

ops s s’ : -> Store .

ops v1 v2 v3 z : -> Variable .

ops value1 value2 : -> Int .

eq s[[v1]] = value1 .

eq s[[v2]] = value2 .

191

Appendix A: Intel 64 Specification

eq s[[ip]] = value1 .

eq s’[[ip]] = value2 .

eq value1 is value2 = false .

endfm

*** Prove that v1 is in Vout(mov v1, v2) (should be FALSE)

red s[[v1]] is s ; mov v1, v2[[v1]] .

*** Prove that ip is in Vout(mov v1, v2) (should be FALSE)

red s[[ip]] is s ; mov v1, v2[[ip]] .

*** Prove that there is no other variable in Vout(mov v1,v2)

*** (should be TRUE)

*** NB: it is obvious that z =/= ip and z =/= v1

red s[[z]] is s ; mov v1, v2[[z]] .

Proof from Example 2, p. 30

*** vin.maude

*** Vin proofs for mov v1, v2. Use with i64.maude.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

fmod VIN1 is

pr I-64-SEMANTICS .

ops s s’ : -> Store .

ops v1 v2 v3 z : -> Variable .

ops value1 value2 : -> Int .

var V : Variable .

eq s[[v2]] = value1 .

eq s’[[v2]] = value2 .

eq value1 is value2 = false .

*** assume that s and s’ are equivalent apart from v2

ceq s[[V]] = s’[[V]]

192

if V =/= v2 .

endfm

*** prove that v2 is in Vin(mov v1, v2) (should be FALSE)

red s ; mov v1, v2 [[v1]] is s’ ; mov v1, v2 [[v1]] .

fmod VIN1A is

pr I-64-SEMANTICS .

ops s s’ : -> Store .

ops v1 v2 v3 z : -> Variable .

ops value1 value2 : -> Int .

var V : Variable .

eq s[[ip]] = value1 .

eq s’[[ip]] = value2 .

eq value1 is value2 = false .

*** assume that s and s’ are equivalent apart from ip

ceq s[[V]] = s’[[V]]

if V =/= ip .

endfm

*** prove that ip is in Vin(mov v1, v2) (should be FALSE)

red s ; mov v1, v2 [[ip]] is s’ ; mov v1, v2 [[ip]] .

fmod VIN2 is

pr I-64-SEMANTICS .

ops s s’ : -> Store .

ops v1 v2 v3 z : -> Variable .

ops value1 value2 : -> Int .

var V : Variable .

*** assume that s and s’ are equivalent apart from z

ceq s[[V]] = s’[[V]]

if V =/= z .

eq s[[z]] =/= s’[[z]] = true .

193

Appendix A: Intel 64 Specification

*** it is obvious that z =/= ip and z =/= v2

endfm

*** prove that no other variable is in Vin(mov v1, v2)

*** by showing that after executing mov v1,v2

*** the resulting stores are equivalent at Vout(mov v1, v2)

*** -- both reductions should be TRUE.

red s ; mov v1, v2 [[v1]] is s’ ; mov v1, v2 [[v1]] .

red s ; mov v1, v2 [[ip]] is s’ ; mov v1, v2 [[ip]] .

Proofs from Section 2.6.1

*** bistro.maude

*** Proof script for virus Win95/Bistro code fragments.

*** Use with i64.maude.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

fmod I-64-PROOF-1 is

pr I-64-SEMANTICS .

ops a b : -> InstructionSequence .

*** Allomorph 1 fragment 0 -vs- Allomorph 2 fragment 0

eq a = push ebp ; mov ebp, esp .

eq b = push ebp ; push esp ; pop ebp .

endfm

*** Proof: equivalence w.r.t. every variable except ip

*** This should be FALSE.

red s ; a [[ip]] is s ; b [[ip]] .

*** These should be TRUE.

194

red s ; a [[stack]] is s ; b [[stack]] .

red s ; a [[ebp]] is s ; b [[ebp]] .

fmod I-64-PROOF-1 is

pr I-64-SEMANTICS .

op dword1 : -> EInt .

ops c d : -> InstructionSequence .

*** Allomorph 1 fragment 1 -vs- Allomorph 2 fragment 1

eq c = mov esi, dword1 ; test esi, esi .

eq d = mov esi, dword1 ; or esi, esi .

endfm

*** Proof: equivalence.

*** These should be TRUE.

red s ; c [[esi]] is s ; d [[esi]] .

red s ; c [[ip]] is s ; d [[ip]] .

red s ; c [[zf]] is s ; d [[zf]] .

red s ; c [[pf]] is s ; d [[pf]] .

red s ; c [[sf]] is s ; d [[sf]] .

red s ; c [[cf]] is s ; d [[cf]] .

red s ; c [[of]] is s ; d [[of]] .

*** QED

fmod I-64-PROOF-1 is

pr I-64-SEMANTICS .

op dword2 : -> EInt .

ops e f : -> InstructionSequence .

*** Allomorph 1 fragment 2 -vs- Allomorph 2 fragment 2

eq e = mov edi, dword2 ; or edi, edi .

eq f = mov edi, dword2 ; test edi, edi .

195

Appendix A: Intel 64 Specification

endfm

*** Proof: equivalence

*** These should be TRUE.

red s ; e [[edi]] is s ; f [[edi]] .

red s ; e [[ip]] is s ; f [[ip]] .

red s ; e [[zf]] is s ; f [[zf]] .

red s ; e [[pf]] is s ; f [[pf]] .

red s ; e [[sf]] is s ; f [[sf]] .

red s ; e [[cf]] is s ; f [[cf]] .

red s ; e [[of]] is s ; f [[of]] .

*** QED

Proofs from Section 2.6.2

*** zmorph.maude

*** Proof script for virus Win9x.Zmorph.A code fragments.

*** Use with i64.maude.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** Note that dadd and dsub are used in place of add and sub -

*** this is simply to use the versions of add and sub that are

*** designed for dynamic analysis.

fmod I-64-PROOF is

pr I-64-SEMANTICS .

ops g h : Store -> Store .

var S : Store .

*** Allomorph 1 -vs- Allomorph 2

eq g(S) = S ; mov edi, 2580774443 ;

mov ebx, 467750807 ;

dsub ebx, 1745609157 ;

dsub edi, 150468176 ;

xor ebx, 875205167 ;

196

push edi ;

xor edi, 3761393434 ;

push ebx ;

push edi .

eq h(S) = S ; mov ebx, 535699961 ;

mov edx, 1490897411 ;

xor ebx, 2402657826 ;

mov ecx, 3802877865 ;

xor edx, 3743593982 ;

dadd ecx, 2386458904 ;

push ebx ;

push edx ;

push ecx .

endfm

*** Proof: equivalence modulo the stack

*** This should be true

red g(s)[[stack]] is h(s)[[stack]] .

*** QED

*** Check the state of the stack.

red g(s)[[stack]] .

Proofs from Example 3, p. 38

*** eic1.maude

*** Proof of equivalence in context.

*** Use with i64.maude.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** Note that dadd and dsub are used in place of add and sub -

*** this is simply to use the versions of add and sub that are

*** designed for dynamic analysis.

fmod I-64-PROOF is

pr I-64-SEMANTICS .

197

Appendix A: Intel 64 Specification

ops g h psi : -> InstructionSequence .

var S : Store .

*** Allomorph 1 -vs- Allomorph 2

eq g = mov edi, 2580774443 ;

mov ebx, 467750807 ;

dsub ebx, 1745609157 ;

dsub edi, 150468176 ;

xor ebx, 875205167 ;

push edi ;

xor edi, 3761393434 ;

push ebx ;

push edi .

eq h = mov ebx, 535699961 ;

mov edx, 1490897411 ;

xor ebx, 2402657826 ;

mov ecx, 3802877865 ;

xor edx, 3743593982 ;

dadd ecx, 2386458904 ;

push ebx ;

push edx ;

push ecx .

eq psi = mov edi, 0 ;

mov ebx, 0 ;

mov ecx, 0 ;

mov edx, 0 .

endfm

*** Proof: semi-equivalence before executing psi

*** These should be TRUE

red s ; g [[stack]] is s ; h [[stack]] .

red s ; g [[ip]] is s ; h [[ip]] .

*** These should be FALSE

red s ; g [[edi]] is s ; h [[edi]] .

198

red s ; g [[ebx]] is s ; h [[ebx]] .

red s ; g [[ecx]] is s ; h [[ecx]] .

red s ; g [[edx]] is s ; h [[edx]] .

*** QED

*** Proof: equivalence after executing psi

*** These should be TRUE

red s ; g ; psi [[stack]] is s ; h ; psi [[stack]] .

red s ; g ; psi [[ip]] is s ; h ; psi [[ip]] .

red s ; g ; psi [[edi]] is s ; h ; psi [[edi]] .

red s ; g ; psi [[ebx]] is s ; h ; psi [[ebx]] .

red s ; g ; psi [[ecx]] is s ; h ; psi [[ecx]] .

red s ; g ; psi [[edx]] is s ; h ; psi [[edx]] .

*** QED

Proofs from Example 4, p. 40

*** eic2.maude

*** Proof of equivalence in context.

*** Use with i64.maude.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** Note that dadd and dsub are used in place of add and sub -

*** this is simply to use the versions of add and sub that are

*** designed for dynamic analysis.

fmod I-64-PROOF is

pr I-64-SEMANTICS .

ops g h psi’ : -> InstructionSequence .

var S : Store .

*** Allomorph 1 -vs- Allomorph 2

eq g = mov edi, 2580774443 ;

mov ebx, 467750807 ;

dsub ebx, 1745609157 ;

199

Appendix A: Intel 64 Specification

dsub edi, 150468176 ;

xor ebx, 875205167 ;

push edi ;

xor edi, 3761393434 ;

push ebx ;

push edi .

eq h = mov ebx, 535699961 ;

mov edx, 1490897411 ;

xor ebx, 2402657826 ;

mov ecx, 3802877865 ;

xor edx, 3743593982 ;

dadd ecx, 2386458904 ;

push ebx ;

push edx ;

push ecx .

eq psi’ = pop edi ;

pop ebx ;

pop ecx ;

mov edx, ecx .

endfm

*** Proof: semi-equivalence before executing psi’

*** These should be TRUE

red s ; g [[stack]] is s ; h [[stack]] .

red s ; g [[ip]] is s ; h [[ip]] .

*** These should be FALSE

red s ; g [[edi]] is s ; h [[edi]] .

red s ; g [[ebx]] is s ; h [[ebx]] .

red s ; g [[ecx]] is s ; h [[ecx]] .

red s ; g [[edx]] is s ; h [[edx]] .

*** QED

*** Proof: equivalence after executing psi’

*** These should be TRUE

200

red s ; g ; psi’ [[stack]] is s ; h ; psi’ [[stack]] .

red s ; g ; psi’ [[ip]] is s ; h ; psi’ [[ip]] .

red s ; g ; psi’ [[edi]] is s ; h ; psi’ [[edi]] .

red s ; g ; psi’ [[ebx]] is s ; h ; psi’ [[ebx]] .

red s ; g ; psi’ [[ecx]] is s ; h ; psi’ [[ecx]] .

red s ; g ; psi’ [[edx]] is s ; h ; psi’ [[edx]] .

*** QED

201

Appendix A: Intel 64 Specification

202

Appendix B: Unix Computer Virus

Specification

This appendix contains the Maude specification of the execution of a Unix Bash script

computer virus. This specification was used in Chapter 3.

Maude Specification

*** bash0.maude

*** Execution of a Unix shell script computer virus

*** in a simplified version of the Bash interpreter.

*** Virus: cp $0 $0.copy

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

fmod SCRIPT-LANGUAGE is

sorts Var FileHandle Expression Statement .

subsort Var FileHandle < Expression < Statement .

op $0 : -> Var .

op null : -> Expression .

op _.copy : Expression -> Expression .

op _.copy : FileHandle -> FileHandle .

op cp _ _ : Expression Expression -> Statement .

op subst : Expression Expression -> Expression .

vars E E’ : Expression .

var FH : FileHandle .

eq subst(E, $0) = E .

eq subst(E, FH) = FH .

203

Appendix B: Unix Computer Virus Specification

eq subst(E, E’ .copy) = subst(E, E’).copy .

endfm

view Statement from TRIV to SCRIPT-LANGUAGE is

sort Elt to Statement .

endv

fmod FILE is

pr (LIST *(sort List{X} to Statements, op __ to _;_)){Statement} .

sort File .

op [_:_] : FileHandle Statements -> File .

endfm

view File from TRIV to FILE is

sort Elt to File .

endv

fmod BASH is

pr SCRIPT-LANGUAGE .

pr (LIST *(sort List{X} to Filestore)){File} .

sort State .

op _ [$0:_] : Filestore Expression -> State .

op _|_ : State Statements -> State .

op fetch : FileHandle Filestore -> Statements .

op copy : Statements Expression Filestore -> Filestore .

var O : State .

var FS : Filestore .

vars E E1 E2 : Expression .

vars S S’ : Statements .

vars FH FH’ : FileHandle .

eq O | nil = O .

eq FS [$0: E] | FH ; S = FS [$0: FH] | fetch(FH,FS) ; S .

eq fetch(FH, nil) = nil .

eq fetch(FH, [FH : S] FS) = S .

204

cq fetch(FH, [FH’ : S] FS) = fetch(FH, FS) if FH =/= FH’ .

eq FS [$0: E] | (cp E1 E2) ; S =

copy(fetch(subst(E,E1),FS), subst(E,E2), FS) [$0: E] | S .

eq copy(S, FH, nil) = [FH : S] .

eq copy(S, FH, [FH : S’] FS) = [FH : S] FS .

cq copy(S, FH, [FH’ : S’] FS) = [FH’ : S’] copy(S,FH,FS)

if FH =/= FH’ .

endfm

fmod VIRUS-EXAMPLE is

pr BASH .

op virus : -> FileHandle .

endfm

red [virus : cp $0 $0 .copy] [$0: null] | virus .

205

Appendix B: Unix Computer Virus Specification

206

Appendix C: Bacteriophage Specification

This appendix contains two Maude specifications of the reproduction of the T4 bac-

teriophage virus. The first is an abstract, schematic model, and the second is a less

abstract, more detailed model. Both of these specifications were used in Chapter 3.

T4 Bacteriophage Reproduction — Abstract Model

*** t4schematic.maude

*** A schematic model of the T4 bacteriophage life-cycle.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** The labelled transition system (the labels are literally

*** the labels of the rewrite rules).

mod SCHEMATIC-T4LTS is

*** states of the transition system

sort State .

*** the individual states

ops s1 s2 s3 s4 s5 s6 s7 : -> State .

*** the transitions

rl [attach] : s1 => s2 .

rl [penetrate] : s2 => s3 .

rl [inject] : s3 => s4 .

rl [synthesise] : s4 => s5 .

rl [mature] : s5 => s6 .

rl [release] : s6 => s7 .

endm

*** Search for a finalised term that cannot

207

Appendix C: Bacteriophage Specification

*** be rewritten any further. (Result should

*** be a path from s1 to s7.)

search s1 =>! S:State .

show path 6 .

*** The entities.

mod SCHEMATIC-T4MODEL0 is

pr SCHEMATIC-T4LTS .

*** the entities in the model

sort Entity .

*** just one entity: a T4 bacteriophage

op t4phage : -> Entity .

*** entities in states relation

op _ in _ : Entity State -> Bool .

var S : State .

*** t4phage is present in all states

eq t4phage in S = true .

endm

*** An alternative model.

mod SCHEMATIC-T4MODEL1 is

pr SCHEMATIC-T4LTS .

*** the entities in the model

sort Entity .

*** a T4 bacteriophage

op t4phage : -> Entity .

*** and a cell

op theCell : -> Entity .

*** entities in states relation

op _ in _ : Entity State -> Bool .

var S : State .

208

*** t4phage is present in all states

eq t4phage in S = true .

*** theCell present in s1..s6

eq theCell in S = (S =/= s7) .

endm

*** Search for a state in which the cell

*** is not present. Should return a path

*** leading to s7.

search in SCHEMATIC-T4MODEL1 :

s1 =>* S:State

such that not(theCell in S:State) .

show path 6 .

*** Another alternative model.

mod SCHEMATIC-T4MODEL2 is

pr SCHEMATIC-T4LTS .

*** the entities in the model

sort Entity .

*** a T4 bacteriophage

op t4phage : -> Entity .

*** and a cell

op theCell : -> Entity .

*** and its nucleus

op theNucleus : -> Entity .

*** entities in states relation

op _ in _ : Entity State -> Bool .

var S : State .

*** t4phage is present in s1, s2, s6 and s7;

eq t4phage in S = (S =/= s3) and (S =/= s4) and (S =/= s5) .

*** theCell and theNucleus are present in s1..s6

eq theCell in S = (S =/= s7) .

eq theNucleus in S = true .

209

Appendix C: Bacteriophage Specification

endm

*** Search for states in which the t4phage appears.

*** Should return s1, s2, s6 and s7.

search in SCHEMATIC-T4MODEL2 :

s1 =>* S:State

such that t4phage in S:State .

T4 Bacteriophage Reproduction — Detailed Model

*** t4cell.maude

*** A model of the T4 bacteriophage life-cycle.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** The soup represents a solution which may appear

*** inside or outside a cell.

mod SOUP{X :: TRIV} is

sort Soup .

subsort X$Elt < Soup .

op empty : -> Soup .

op _ _ : Soup Soup -> Soup [assoc comm id: empty] .

op _in_ : X$Elt Soup -> Bool .

vars E E’ : X$Elt .

var S : Soup .

eq E in empty = false .

eq E in E’ S = (E == E’) or (E in S) .

endm

*** The inner stuff represents what can be contained

*** in the soup, e.g., RNA and bacteriophages.

mod INNERSTUFF is

sorts RNA Nucleus T4BP InnerStuff .

subsorts RNA T4BP < InnerStuff .

op t4[_] : RNA -> T4BP .

210

endm

*** View the sort Elt from the TRIV module as

*** the sort InnerStuff in the INNERSTUFF module.

view InnerStuff from TRIV to INNERSTUFF is

sort Elt to InnerStuff .

endv

mod ENTITY is

*** Set up lists of inner stuff.

protecting (SOUP *(sort Soup to InnerSoup,

op empty to emptyIS,

op _ _ to _:_,

op _in_ to _inIS_))

{InnerStuff} .

sorts Cell Entity .

subsorts InnerStuff Cell Nucleus < Entity .

op cell : Nucleus InnerSoup -> Cell .

op [_]-[_] : Cell T4BP -> Cell .

op [_]<[_] : Cell T4BP -> Cell .

endm

view Entity from TRIV to ENTITY is

sort Elt to Entity .

endv

mod T4CELL-MODEL is

protecting (SOUP *(sort Soup to State)){Entity} .

protecting ENTITY .

var N : Nucleus .

var IS : InnerSoup .

vars T T1 T2 : T4BP .

vars C C1 C2 : Cell .

vars R R’ : RNA .

211

Appendix C: Bacteriophage Specification

rl [attach] : C T => [C]-[T] .

rl [penetrate] : [C]-[T] => [C]<[T] .

rl [inject] : [cell(N, IS)]<[t4[R]] => cell(N, (IS : R)) .

rl [synthesise] :

cell(N, (R : IS)) => cell(N, (R : IS : R)) .

rl [mature] :

cell(N, (R : IS)) => cell(N, (t4[R] : IS)) .

rl [release] : cell(N, T : IS) => T : IS .

op _ in1 _ : Entity State -> Bool .

op strip : Cell -> Cell .

op stripAll : State -> State .

op getRNA : T4BP -> RNA .

op _matches_ : RNA State -> Bool .

op _matchesIS_ : RNA InnerSoup -> Bool .

op _inCell_ : RNA Cell -> Bool .

var S : State .

var E : Entity .

eq [[C]<[T1]]<[T2] = [[C]<[T2]]<[T1] .

eq C in1 S = strip(C) in stripAll(S) .

eq T in1 S = getRNA(T) matches S .

eq E in1 S = E in S [owise] .

eq strip([C]-[T]) = strip(C) .

eq strip([C]<[T]) = strip(C) .

eq strip(cell(N,IS)) = cell(N,emptyIS) .

eq stripAll(empty) = empty .

eq stripAll(C S) = strip(C) stripAll(S) .

eq stripAll(E S) = E stripAll(S) [owise] .

eq getRNA(t4[R]) = R .

eq R matches empty = false .

eq R matches T S = (R == getRNA(T)) or (R matches S) .

eq R matches C S = (R inCell C) or (R matches S) .

eq R matches S = false [owise] .

eq R inCell [C]<[T] = R inCell T .

212

eq R inCell [C]-[T] = (R == getRNA(T)) or (R inCell C) .

eq R inCell cell(N, IS) = R matchesIS IS .

eq R matchesIS emptyIS = false .

eq R matches R’ IS = (R == R’) or (R matchesIS IS) .

eq R matches T IS = (R == getRNA(T)) or (R matchesIS IS) .

endm

mod EXAMPLE is

protecting T4CELL-MODEL .

ops rna1 rna2 rna3 rna4 : -> RNA .

ops n1 n2 : -> Nucleus .

ops init init2 init3 : -> State .

op initSmall : -> State .

op chapter3example : -> State .

op o : -> InnerSoup .

ops cell1 cell2 : -> Cell .

eq cell1 = cell(n1, emptyIS) .

eq cell2 = cell(n2, emptyIS) .

eq init = cell1 cell(n2, emptyIS) t4[rna1] t4[rna2]

t4[rna3] t4[rna4] .

eq init2 = cell1 t4[rna1] .

eq init3 = cell1 cell2 t4[rna1] .

eq initSmall = cell1 t4[rna1] .

eq chapter3example = t4[rna1] cell1 t4[rna1] .

endm

*** search for states reachable from initSmall in which

*** cell1 is not present.

search [1, 10] in EXAMPLE :

initSmall =>+ S:State such that not(cell1 in1 S:State) .

show path 8 .

*** search for states reachable from initSmall in which

*** cell1 is not present, and t4[rna1] is present.

search [1, 12] in EXAMPLE :

213

Appendix C: Bacteriophage Specification

initSmall =>+ S:State such that not(cell1 in1 S:State)

and t4[rna1] in1 S:State .

show path 8 .

214

Appendix D: Anti-Virus Specification

This appendix contains the Maude specifications of different anti-virus behaviour mon-

itors used in Chapter 4.

Maude Specification

*** av.maude

*** A Maude specification of different anti-virus ontologies,

*** and how they handle statement lists.

*** Used with Maude 2.3 built: Feb 14 2007 17:53:50

*** set up basic sorts for actions, events, entities

fmod ACTION is

sorts Action .

endfm

fmod EVENT is

sort Event .

endfm

*** set up views from trivial module so that we can have

*** lists and sets of these things

view Action from TRIV to ACTION is

sort Elt to Action .

endv

view Event from TRIV to EVENT is

sort Elt to Event .

215

Appendix D: Anti-Virus Specification

endv

*** Defines the library operations available to anti-virus

*** software.

fmod AV-LIBRARY is

*** parameterise the LIST module with Action and Event -

*** this gives us lists of Actions and Events

pr LIST{Action} .

pr LIST{Event} .

sort Class .

ops a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 : -> Action .

*** Anti-virus software can observe a virus executing,

*** identify the entities at work and then classify

*** the resulting reproduction model.

op observe : List{Action} -> List{Event} .

op classify : List{Event} -> Class .

op Assisted : -> Class .

op Unassisted : -> Class .

vars S : Action .

vars SL : List{Action} .

var C : Event .

var CL : List{Event} .

eq observe(S SL) = observe(S) observe(SL) .

eq classify(nil) = Unassisted .

ceq classify(CL) = Assisted

if CL =/= nil .

endfm

*** AV1 defines the behaviour monitoring capabilities of an

*** antivirus program.

*** Calls to Windows Scripting Host are observable,

*** therefore WSH is a separate entity.

216

fmod AV1 is

pr AV-LIBRARY .

ops CreateObject Randomize GetFolder GetFile ScriptFullName

Copy : -> Event .

eq observe(a1) = nil .

eq observe(a2) = CreateObject .

eq observe(a3) = GetFolder .

eq observe(a4) = GetFile ScriptFullName .

eq observe(a5) = nil .

eq observe(a6) = Copy .

endfm

*** baby virus: a1 a2 a3 a4 a5 a6

red observe(a1 a2 a3 a4 a5 a6) .

red classify(observe(a1 a2 a3 a4 a5 a6)) .

*** AV1 defines the behaviour monitoring capabilities of an

*** antivirus program.

*** Calls to Windows Scripting Host are observable,

*** therefore WSH is a separate entity.

fmod AV2 is

pr AV-LIBRARY .

ops s1 s2 s3 s4 s5 s6 : -> Event .

eq observe(a1) = s1 .

eq observe(a2) = s2 .

eq observe(a3) = s3 .

eq observe(a4) = s4 .

eq observe(a5) = s5 .

eq observe(a6) = s6 .

endfm

*** baby virus: a1 a2 a3 a4 a5 a6

red observe(a1 a2 a3 a4 a5 a6) .

red classify(observe(a1 a2 a3 a4 a5 a6)) .

217

Appendix D: Anti-Virus Specification

*** AV3 defines the behaviour monitoring capabilities of an

*** antivirus program.

*** No events are observable for any action, i.e., behaviour

*** monitoring is turned off.

fmod AV3 is

pr AV-LIBRARY .

var A : Action .

var LA : List{Action} .

*** All actions result in no events being detected

eq observe(LA) = nil .

endfm

*** baby virus: a1 a2 a3 a4 a5 a6

red observe(a1 a2 a3 a4 a5 a6) .

red classify(observe(a1 a2 a3 a4 a5 a6)) .

*** AV4 defines the behaviour monitoring capabilities of an

*** antivirus program.

*** Calls to GetFolder (afforded by WSH) are observable,

*** therefore WSH is a separate entity.

fmod AV4 is

pr AV-LIBRARY .

ops CreateObject Randomize GetFolder GetFile ScriptFullName

Copy : -> Event .

eq observe(a1) = nil .

eq observe(a2) = nil .

eq observe(a3) = GetFolder .

eq observe(a4) = nil .

eq observe(a5) = nil .

eq observe(a6) = nil .

endfm

*** baby virus: a1 a2 a3 a4 a5 a6

218

red observe(a1 a2 a3 a4 a5 a6) .

red classify(observe(a1 a2 a3 a4 a5 a6)) .

*** AV5 defines the behaviour monitoring capabilities of an

*** antivirus program.

*** Calls to GetFolder (afforded by WSH) are observable,

*** therefore WSH is a separate entity.

*** However, this virus does not use GetFolder, the line 3

*** of this new virus is

*** Set HOME = "C:\" .

*** Therefore this statement is unobservable.

fmod AV5 is

pr AV-LIBRARY .

ops CreateObject Randomize GetFolder GetFile ScriptFullName

Copy : -> Event .

eq observe(a1) = nil .

eq observe(a2) = nil .

eq observe(a3) = nil .

eq observe(a4) = nil .

eq observe(a5) = nil .

eq observe(a6) = nil .

endfm

*** baby virus: a1 a2 a3 a4 a5 a6

red observe(a1 a2 a3 a4 a5 a6) .

red classify(observe(a1 a2 a3 a4 a5 a6)) .

*** AV4 defines the behaviour monitoring capabilities of an

*** antivirus program.

*** Calls to GetFolder (afforded by WSH) are observable,

*** therefore WSH is a separate entity.

fmod AV6 is

pr AV-LIBRARY .

op a3’ : -> Action .

219

Appendix D: Anti-Virus Specification

ops CreateObject Randomize GetFolder GetFile ScriptFullName

Copy : -> Event .

eq observe(a1) = nil .

eq observe(a2) = nil .

eq observe(a3) = GetFolder .

eq observe(a3’) = nil .

eq observe(a4) = nil .

eq observe(a5) = nil .

eq observe(a6) = nil .

endfm

*** Baby virus version 1

red observe(a1 a2 a3 a4 a5 a6) .

red classify(observe(a1 a2 a3 a4 a5 a6)) .

*** Baby virus version 2

red observe(a1 a2 a3’ a4 a5 a6) .

red classify(observe(a1 a2 a3’ a4 a5 a6)) .

220

List of Figures

1.1 Cohen’s formal definition of computer viruses. 4

1.2 Von Neumann’s reproducing automaton. 9

2.1 Allomorphic fragments of Win95/Bistro. 32

2.2 Allomorphic fragments of Win9x.Zmorph.A. 35

2.3 Application of equivalence-in-context. 44

3.1 Reproduction in cellular automata. 65

3.2 The T4 bacteriophage virus. 66

3.3 Informal reproducer classification based on affordances. 68

3.4 Allowed refinements between classes of affordance-based models. 83

3.5 Refinement arrows between M , M# and N 85

3.6 A possible labelled transition system for a model of Langton’s loop. . . 90

3.7 Taylor’s classification of reproducers. 103

4.1 Unix shell script virus. 127

4.2 Virus.VBS.Archangel. 130

4.3 Labelled transition system for Virus.VBS.Archangel. 131

4.4 MINI-44 virus. 137

4.5 Virus.VBS.Baby. 141

4.6 A variant of Virus.VBS.Baby. 148

5.1 A metamorphic engine based on the Maude specification of Intel 64. . . 176

5.2 Ontological shifts for a biological system. 178

5.3 Reproducing robots developed at Cornell University. 184

221

List of Figures

222

Bibliography

[1] VX Heavens. http://vx.netlux.org/. Accessed 22nd March 2008.

[2] Hi-tech crime: The impact on UK business 2005. National Hi-Tech Crime Unit

Report, 2006.

[3] Bryant Adams and Hod Lipson. A universal framework for self-replication. In

European Conference on Artificial Life (ECAL’03), pages 1–9, 2003.

[4] Leonard M. Adleman. An abstract theory of computer viruses. In Advances in

Cryptology — CRYPTO ‘88, volume 403 of Lecture Notes in Computer Science,

pages 354–374, 1990.

[5] Eli Bachmutsky. Self-replicating loops & Ant, February 1999. Java pro-

gram. http://necsi.org/postdocs/sayama/sdsr/java/loops.java. Accessed

7th April 2008.

[6] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer Science,

335:131–146, 2005.

[7] Mark A. Bedau, John S. McCaskill, Norman H. Packard, Steen Rasmussen, Chris

Adami, David G. Green, Takashi Ikegami, Kunihiko Kaneko, and Thomas S. Ray.

Open problems in artificial life. Artificial Life, 6:363–376, 2000.

[8] Trevor Bench-Capon and Grant Malcolm. Formalising ontologies and their re-

lations. In Trevor Bench-Capon, Giovanni Soda, and A. Min Tjoa, editors,

Proc. 10th International Conf. on Database and Expert Systems Applications

(DEXA’99), pages 250–259. Springer Lecture Notes in Computer Science volume

1677, 1999.

[9] Trevor Bench-Capon, Grant Malcolm, and Michael Shave. Semantics for inter-

operability: relating ontologies and schemata. In V. Marik, W. Retschitzegger,

and O. Stepanovka, editors, Proceedings of DEXA 2003, pages 703–712. Springer

Lecture Notes in Computer Science volume 2736, 2003.

223

http://vx.netlux.org/
http://necsi.org/postdocs/sayama/sdsr/java/loops.java

Bibliography

[10] Paul Bernays. Axiomatic Set Theory. North-Holland, Amsterdam, 1958.

[11] Daniel Bilar. On callgraphs and generative mechanisms. Journal in Computer

Virology, 3:299–310, 2007.

[12] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Mar-

ion. Abstract detection of computer viruses. Technical report, IN-

RIA, 2005. Third Workshop on Applied Semantics (APPSEM’05).

http://hal.inria.fr/inria-00115368/en/. Accessed 7th April 2008.

[13] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. Toward an

abstract computer virology. In Proceedings of the Second International Collo-

quium on Theoretical Aspects of Computing (ICTAC 2005), volume 3722 of Lec-

ture Notes in Computer Science. Springer, 2005.

[14] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. On abstract

computer virology: from a recursion-theoretic perspective. Journal in computer

virology, 1(3–4):45–54, 2006.

[15] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. A classifi-

cation of viruses through recursion theorems. In S.B. Cooper, B. Löwe, and

A. Sorbi, editors, CiE 2007, volume 4497 of Lecture Notes in Computer Science.

Springer-Verlag Berlin Heidelberg, 2007.

[16] Guillaume Bonfante, Matthieu Kaczmarek, and Jean-Yves Marion. An implemen-

tation of morphological malware detection. In 17th European Institute for Com-

puter Antivirus Research Annual Conference Proceedings (EICAR 2008), pages

47–62, 2008.

[17] Jean-Marie Borello and Ludovic Mé. Code obfuscation techniques for metamor-

phic viruses. Journal in Computer Virology, 4(3):211–220, 2008.

[18] Jean-Marie Borello, Ludovic Mé, and Éric Filiol. Limits of metamorphic viruses

detection tools [sic]. Annals of Telecommunications. To appear.

[19] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-mutating

malware using control-flow graph matching. In R. Büschkes and P. Laskov, ed-

itors, Conference on Detection of Intrusions and Malware & Vulnerability As-

sessment (DIMVA), volume 4064 of Lecture Notes in Computer Science, pages

129–143. Springer, 2006.

224

http://hal.inria.fr/inria-00115368/en/

Bibliography

[20] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Using code normal-

ization for fighting self-mutating malware. In Proceedings of the International

Symposium on Secure Software Engineering, 2006.

[21] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Code normalization for

self-mutating malware. IEEE Security & Privacy, 5(2):46–54, 2007.

[22] John Byl. Self-reproduction in small cellular automata. Physica D, 34:295–299,

1989.

[23] Philip L. Campbell. The denial-of-service dance. IEEE Security & Privacy,

3(6):34–40, 2005.

[24] Ero Carrera and Gergely Erdélyi. Digital genome mapping — advanced binary

malware analysis. In Virus Bulletin Conference, September 2004.

[25] Fabricio Chalub and Christiano Braga. A modular rewriting semantics for CML.

Journal of Universal Computer Science, 10(7):789–807, 2004.

[26] David M. Chess and Steve R. White. An undetectable computer virus. In Virus

Bulletin Conference, September 2000.

[27] Mohamed R. Chouchane and Arun Lakhotia. Using engine signature to detect

metamorphic malware. In Proceedings of the Fourth ACM Workshop on Recurring

Malcode (WORM), pages 73–78, 2006.

[28] Mihai Christodorescu, Somesh Jha, Sanjit A. Seshia, Dawn Song, and Randal E.

Bryant. Semantics-aware malware detection. In Proceedings of the 2005 IEEE

Symposium on Security and Privacy, pages 32–46. ACM Press, 2005.

[29] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-

Oliet, José Meseguer, and José F. Quesada. Maude: Specification and program-

ming in rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002.

[30] E.F. Codd. Cellular Automata. Academic Press, New York, 1968.

[31] Fred Cohen. Computer viruses — theory and experiments. Computers and Se-

curity, 6(1):22–35, 1987.

[32] Fred Cohen. Computational aspects of computer viruses. Computers and Secu-

rity, 8:325–344, 1989.

[33] Frederick B. Cohen. It’s Alive! The New Breed of Living Computer Programs.

John Wiley & Sons, 1994.

225

Bibliography

[34] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[35] Marcelo d’Amorim and Grigore Roşu. An equational specification for the Scheme

language. Journal of Universal Computer Science, 11(7):1327–1348, 2005.

[36] Richard Dawkins. The Selfish Gene. Oxford University Press, USA, 1990. First

published 1976. ISBN: 0192860925.

[37] A. K. Dewdney. Computer recreations: In the game called core war hostile

programs engage in a battle of bits. Scientific American, 250(5):14–22, May

1984.

[38] A. K. Dewdney. Computer recreations: A core war bestiary of viruses, worms

and other threats to computer memories. Scientific American, March 1989.

[39] K. Eric Drexler. Engines of Creation: The Coming Era of Nanotechnology. An-

chor Books, 1986.

[40] Éric Filiol. Metamorphism, formal grammars and undecidable code mutation.

International Journal of Computer Science, 2(1):70–75, 2007.

[41] Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Roşu. Formal analysis

of Java programs in JavaFAN. In Proceedings of CAV’04, volume 3114 of Lecture

Notes in Computer Science, pages 501–505. Springer, 2004.

[42] Azadeh Farzan, José Meseguer, and Grigore Roşu. Formal JVM code analysis

in JavaFAN. In Proceedings of Algebraic Methodology and Software Technology

(AMAST) 2004, volume 3116 of Lecture Notes in Computer Science, pages 132–

147, 2004.

[43] Eric Filiol. Computer Viruses: from Theory to Applications. Springer, 2005.

ISBN 2287239391.

[44] Eric Filiol. Formalisation and implementation aspects of k-ary (malicious) codes.

Journal in Computer Virology, 3:75–86, 2007.

[45] Eric Filiol, Marko Helenius, and Stefano Zanero. Open problems in computer

virology. Journal in Computer Virology, 1:55–66, 2006.

[46] Eric Filiol, Grégoire Jacob, and Mickaël Le Liard. Evaluation methodology and

theoretical model for antiviral behavioural detection strategies. Journal in Com-

puter Virology, 3:23–37, 2007.

226

Bibliography

[47] Eric Filiol and Sébastien Josse. A statistical model for undecidable viral detection.

Journal in Computer Virology, 3:65–74, 2007.

[48] Richard Ford and Eugene H. Spafford. Happy birthday, dear viruses. Science,

317:210–211, July 2007.

[49] Robert A. Freitas, Jr. and William P. Gilbreath, editors. Advanced Automa-

tion for Space Missions, NASA Conference Publication 2255. NASA Scientific

and Technical Information Branch, 1982. Proceedings of the 1980 NASA/ASEE

Summer Study, Santa Clara, California, USA. June 23–August 29, 1980.

[50] Robert A. Freitas Jr. and Ralph C. Merkle. Kinematic Self-

Replicating Machines. Landes Bioscience, 2004. ISBN 1570596905.

http://www.molecularassembler.com/KSRM.htm. Accessed 26th March

2008.

[51] Martin Gardner. Mathematical games: The fantastic combinations of John Con-

way’s new solitaire game ‘life’. Scientific American, 223:120–123, 1970.

[52] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibility

is not transparency: VMM detection myths and realities. In 11th Workshop on

Hot Topics in Operating Systems (HOTOS-X), 2007.

[53] Alejandra Garrido, José Meseguer, and Ralph Johnson. Algebraic semantics of the

C preprocessor and correctness of its refactorings. Technical Report UIUCDCS-

R-2006-2688, Department of Computer Science, University of Illinois at Urbana–

Champaign, February 2006.

[54] Marius Gheorghescu. An automated virus classification system. In Virus Bulletin

Conference, October 2005.

[55] James J. Gibson. The theory of affordances. Perceiving, Acting and Knowing:

Toward an Ecological Psychology, pages 67–82, 1977.

[56] James J. Gibson. The Ecological Approach to Visual Perception. Houghton Mif-

flin, Boston, 1979. ISBN 0395270499.

[57] Kurt Gödel. On formally undecidable propositions of Principia mathematica and

related systems. Oliver & Boyd, Edinburgh, 1962. Translation of Gödel, “Über

formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-

teme I”, 1931.

227

http://www.molecularassembler.com/KSRM.htm

Bibliography

[58] Joseph A. Goguen and Grant Malcolm. Algebraic Semantics of Imperative Pro-

grams. Massachusetts Institute of Technology, 1996. ISBN 026207172X.

[59] Joseph A. Goguen and Grant Malcolm, editors. Software Engineering with OBJ:

Algebraic Specification in Action. Kluwer Academic Publishers, Boston, 2000.

ISBN 0792377575.

[60] Joseph A. Goguen, Timothy Walker, José Meseguer, Kokichi Futatsugi, and Jean-

Pierre Jouannaud. Introducing OBJ. In Joseph A. Goguen and Grant Malcolm,

editors, Software Engineering with OBJ: Algebraic Specification in Action. Kluwer

Academic Publishers, 2000. ISBN 0792377575.

[61] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin. Constructing

computer virus phylogenies. Journal of Algorithms, 26(1):188–208, 1998.

[62] Lawrence A. Gordon, Martin P. Loeb, William Lucyshyn, and Robert Richardson.

2006 computer crime and security survey. Computer Security Institute (CSI) and

Federal Bureau of Investigation (FBI) report. http://GoCSI.com/. Accessed 7th

April 2008.

[63] Sarah Gordon. Virus writers: The end of the innocence? IBM Antivirus Research

Scientific Papers, September 2000. Presented at Virus Bulletin Conference.

[64] Sarah Gordon. What’s in a name? Syman-

tec Security Response White Paper, October 2002.

http://www.symantec.com/avcenter/reference/whatsinaname.pdf Ac-

cessed 7th April 2008.

[65] Sarah Gordon. Virus and vulnerability classification schemes: Standards

and integration. Symantec Security Response White Paper, February 2003.

http://www.symantec.com/avcenter/reference/virus.and.vulnerability.pdf

Accessed 7th April 2008.

[66] Allan Granoff and Robert G. Webster, editors. Encyclopedia of Virology, vol-

ume 3, pages 1414–15. Academic Press, 1999. Entry on“Virus Multiplication

Cycle”.

[67] Adam Greenfield. Everyware: the dawning age of ubiquitous computing. New

Riders, Berkeley, CA, USA, 2006.

[68] Lutz H. Hamel and Joseph A. Goguen. Towards a provably correct compiler

for OBJ3. In Proceedings of the 6th International Symposium on Programming

228

http://GoCSI.com/
http://www.symantec.com/avcenter/reference/whatsinaname.pdf
http://www.symantec.com/avcenter/reference/virus.and.vulnerability.pdf

Bibliography

Language Implementation and Logic Programming, volume 844 of Lecture Notes

In Computer Science. Springer, 1994.

[69] Martin Henz and Janardan Misra. Towards a framework for observing artificial

life forms. In Proceedings of the 2007 IEEE Symposium on Artificial Life (CI-

ALife 2007), pages 23–30. IEEE Press, 2007.

[70] Michael Hilker and Christoph Schommer. SANA — security analysis in inter-

net traffic through artificial immune systems. In Serge Autexier, Stephan Merz,

Leon van der Torre, Reinhard Wilhelm, and Pierre Wolper, editors, Workshop

“Trustworthy Software” 2006. IBFI, Schloss Dagstuhl, Germany, 2006.

[71] Douglas R. Hofstadter. Gödel, Escher, Bach: an Eternal Golden Braid, chap-

ter 16, page 499. Penguin, 2000.

[72] Zhi hong Zuo, Qing xin Zhu, and Ming tian Zhou. On the time complexity of

computer viruses. IEEE Transactions on Information Theory, 51(8):2962–2966,

2005.

[73] Tim Hutton. John von Neumann’s universal constructor.

http://www.sq3.org.uk/Evolution/JvN/. Accessed 7th April 2008.

[74] Intel Corporation. IA-32 Intel R©Architecture Software Developer’s Manual, March

2006. http://www.intel.com/design/pentium4/manuals/index_new.htm Ac-

cessed 7th April 2008.

[75] Intel Corporation. Intel R©64 and IA-32 Architec-

tures Software Developer’s Manual, November 2007.

http://www.intel.com/products/processor/manuals/index.htm Accessed

19th March 2008.

[76] C.B. Jones. Tentative steps toward a development method for interfering pro-

grams. ACM Transactions on Programming Languages and System, 5(4):596–619,

1983.

[77] Michael David Jones. Tevenphage.png. http://en.wikipedia.org/wiki/Image:Tevenphage.png

Accessed 7th April 2008.

[78] Md. Enamul Karim, Andrew Walenstein, and Arun Lakhotia. Malware phylogeny

using maximal pi-patterns. In EICAR 2005 Conference: Best Paper Proceedings,

pages 156–174, 2005.

229

http://www.sq3.org.uk/Evolution/JvN/
http://www.intel.com/design/pentium4/manuals/index_new.htm
http://www.intel.com/products/processor/manuals/index.htm
http://en.wikipedia.org/wiki/Image:Tevenphage.png

Bibliography

[79] Md. Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida.

Malware phylogeny generation using permutations of code. Journal in Computer

Virology, 1:13–23, 2005.

[80] Kaspersky Lab. Win95.Zmorph. http://www.avp.ch/avpve/newexe/win95/zmorhp.stm.

Accessed 7th April 2008.

[81] Michael Katelman and José Meseguer. A rewriting semantics for ABEL with

applications to hardware/software co-design and analysis. Electronic Notes in

Theoretical Computer Science, 176:47–60, 2007.

[82] Stuart Kauffman. At Home in the Universe: The Search for Laws of Complexity.

Penguin Books, 1996.

[83] Jeffrey O. Kephart. A biologically inspired immune system for computers. In

Rodney A. Brooks and Pattie Maes, editors, Artificial Life IV, Proceedings of the

Fourth International Workshop on Synthesis and Simulation of Living Systems,

pages 130–139. MIT Press, Cambridge, Massachusetts, 1994.

[84] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,

and Jacob R. Lorch. SubVirt: Implementing malware with virtual machines. In

Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006.

[85] George J. Klir, editor. Trends in General Systems Theory. John Wiley & Sons,

1972.

[86] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern matching

in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

[87] Jimmy Kuo and Desiree Beck. The common malware enumeration initiative.

Virus Bulletin, pages 14–15, September 2005.

[88] Arun Lakhotia and Moinuddin Mohammed. Imposing order on program state-

ments to assist anti-virus scanners. In Proceedings of Eleventh Working Confer-

ence on Reverse Engineering. IEEE Computer Society Press, 2004.

[89] Christopher G. Langton. Self-reproduction in cellular automata. Physica D:

Nonlinear Phenomena, 10:135–144, 1984.

[90] Christopher G. Langton. Studying artificial life with cellular automata. Physica

D, 22:120–149, 1986.

[91] Christopher G. Langton, editor. Artificial Life: An Overview. MIT Press, 1995.

ISBN: 0262121891.

230

http://www.avp.ch/avpve/newexe/win95/zmorhp.stm

Bibliography

[92] Lars Löfgren. An axiomatic explanation of complete self-reproduction. Bulletin

of Mathematical Biology, 30(3):415–425, 1968.

[93] Lars Löfgren. Relative explanations of systems. In G. Klir, editor, Trends in

General Systems Theory. John Wiley & Sons, 1972.

[94] Jason D. Lohn and James A. Reggia. Automatic discovery of self-replicating

structures in cellular automata. IEEE Transactions on Evolutionary Computa-

tion, 1(3):165–178, September 1997.

[95] Mark Ludwig. The Little Black Book of Computer Viruses. American Eagle

Publications, Inc., Arizona, USA, 1990.

[96] Mark Ludwig. The Giant Black Book of Computer Viruses. American Eagle

Publications, Inc., Arizona, USA, 1995.

[97] Mark A. Ludwig. Computer Viruses, Artificial Life and Evolution: The Little

Black Book of Computer Viruses Volume II. American Eagle Publications, Inc.,

Arizona, USA, 1993.

[98] Pavel O. Luksha. Formal definition of self-reproductive systems. In Russell K.

Standish, Mark A. Bedau, and Hussein A. Abbass, editors, Artificial Life VIII.

MIT Press, 2002.

[99] Pavel O. Luksha. The firm as a self-reproducing system. In Proceedings of 47th

International System Science Society Conference, 2003.

[100] Charles C. Mann. Homeland insecurity. Atlantic Monthly, September 2002.

http://www.theatlantic.com/doc/200209/mann. Accessed 7th April 2008.

[101] Edwin Martin. John Conway’s game of life. Java program.

http://www.bitstorm.org/gameoflife/. Accessed 7th April 2008.

[102] Barry McMullin. John von Neumann and the evolutionary growth of complexity:

Looking backwards, looking forwards. . . . Artificial Life, 6:347–361, 2000.

[103] Barry McMullin. Thirty years of computational autopoiesis: A review. Artificial

Life, 10:277–295, 2004.

[104] José Meseguer and Grigore Roşu. The rewriting logic semantics project. In

Proceedings of the Second Workshop on Structural Operational Semantics (SOS

2005), volume 156 of Electronic Notes in Theoretical Computer Science, pages

27–56. Elsevier, 2005.

231

http://www.theatlantic.com/doc/200209/mann
http://www.bitstorm.org/gameoflife/

Bibliography

[105] José Meseguer and Grigore Roşu. The rewriting logic semantics project. Theo-

retical Computer Science, 373(3):213–237, 2007.

[106] Moinuddin Mohammed. Zeroing in on metamorphic computer viruses. Master’s

thesis, University of Louisiana at Lafayette, 2003.

[107] Jose Andre Morales, Peter J. Clarke, Yi Deng, and B. M. Golam Kibria. Test-

ing and evaluating virus detectors for handheld devices. Journal in Computer

Virology, 2(2), 2006.

[108] Chrystopher Nehaniv and Kerstin Dautenhahn. Self-replication and reproduc-

tion: Considerations and obstacles for rigorous definitions. In C. Wilke, S. Alt-

meyer, and T. Martinetz, editors, Third German Workshop on Artificial Life:

Abstracting and Synthesizing the Principles of Life, pages 283–290. Verlag Harri

Deutsch, 1998. ISBN: 3-8171-1591-1.

[109] Maureen A. O’Malley and John Dupré. Size doesnt matter: towards a more

inclusive philosophy of biology. Biology and Philosophy, 22:155–191, 2007.

[110] Naoaki Ono and Takashi Ikegami. Self-maintenance and self-reproduction in an

abstract cell model. Journal of Theoretical Biology, 206:243–253, 2000.

[111] Nicolas Oros and Chrystopher L. Nehaniv. Sexyloop: Self-reproduction, evolution

and sex in cellular automata. In Proceedings of the 2007 IEEE Symposium on

Artificial Life (CI-ALife 2007), 2007.

[112] Umberto Pesavento. An implementation of von Neumann’s self-reproducing ma-

chine. Artificial Life, 2:337–354, 1995.

[113] Jonathan Pincus and Brandon Baker. Beyond stack smashing: recent advances

in exploiting buffer overruns. IEEE Security & Privacy, 2(4):20–27, 2004.

[114] Gordon D. Plotkin. A structural approach to operational seman-

tics. Journal of Logic and Algebraic Programming, 60–61:17–139, 2004.

DOI:10.1016/j.jlap.2004.03.002.

[115] Mila Dalla Preda, Mihai Christodorescu, Somesh Jha, and Saumya Debray.

A semantics-based approach to malware detection. In Proceedings of the 34th

ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages

(POPL 2007), 2007.

[116] Bill Purves, David Sadava, Gordon Orians, and Craig Heller. Life, the Science

of Biology. Sinauer Associates, Inc., MA 01375, USA, 7th edition, 2003. ISBM:

0716798565.

232

Bibliography

[117] T. S Ray. An approach to the synthesis of life. In Artificial Life II, pages 371–408.

Addison-Wesley, California, 1991. ISBN 0201525712.

[118] T.S. Ray. Evolution, complexity, entropy, and artificial reality. Physica D, 75:239–

263, 1994.

[119] Chris Reed and Timothy J. Norman. A formal characterisation of Hamblin’s

action–state semantics. Journal of Philosophical Logic, 36:415–448, 2007. DOI:

10.1007/s10992-006-9041-z.

[120] Daniel Reynaud-Plantey. The Java mobile risk. Journal in Computer Virology,

2(2), 2006.

[121] Melanie R. Rieback, Bruno Crispo, and Andrew S. Tanenbaum. Is your cat

infected with a computer virus? In IEEE Pervasive Computing and Communi-

cations (PERCOM 2006), 2006.

[122] Robert Rosen. On a logical paradox implicit in the notion of a self-reproducing

automaton. Bulletin of Mathematical Biophysics, 21:387–394, 1959.

[123] Robert Rosen. Life Itself. Columbia University Press, 1991.

[124] Robert Rosen. Essays on Life Itself. Columbia University Press, 1999. ISBN:

978-0231105118.

[125] Eugene Rosenberg, Omry Koren, Leah Reshef, Rotem Efrony, and Ilana Zilber-

Rosenberg. The role of microorganisms in coral health, disease and evolution.

Nature Reviews Microbiology, 5:355–362, 2007.

[126] Joanna Rutkowska. Red Pill. . . or how to detect VMM using (almost) one CPU in-

struction. http://www.invisiblethings.org/papers/redpill.html, Novem-

ber 2004. Accessed 19th March 2008.

[127] Joanna Rutkowska. Subverting VistaTM kernel for fun and

profit. Black Hat Briefings 2006, Las Vegas, USA, August 2006.

http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf

Accessed 19th March 2008.

[128] Ralf Sasse and José Meseguer. Java+ITP: A verification tool based on Hoare

logic and algebraic semantics. Electronic Notes in Theoretical Computer Science,

176:29–46, 2007.

[129] Hiroki Sayama. A new structurally dissolvable self-reproducing loop evolving in

a simple cellular automata space. Artificial Life, 5:343–365, 1999.

233

http://www.invisiblethings.org/papers/redpill.html
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf

Bibliography

[130] Erwin Schrödinger. What is Life? Cambridge University Press, 1944.

[131] John F. Shoch and Jon A. Hupp. The “worm” programs – early experience with

a distributed computation. Communications of the ACM, 25(3):172–180, 1982.

[132] Moshe Sipper. An introduction to artificial life. Explorations in Artificial Life

(special issue of AI Expert), pages 4–8, September 1995.

[133] Moshe Sipper. Fifty years of research on self-replication: An overview. Artificial

Life, 4:237–257, 1998.

[134] Anil Somayaji, Steven Hofmeyr, and Stephanie Forrest. Principles of a computer

immune system. In 1997 New Security Paradigms Workshop. ACM Press, 1997.

[135] Eugene H. Spafford. Computer viruses as artificial life. Journal of Artificial Life,

1(3):249–265, 1994.

[136] Diomidis Spinellis. Reliable identification of bounded-length viruses is NP-

complete. IEEE Transactions on Information Theory, 49(1):280–284, 2003.

[137] Symantec Corporation. Virus naming conventions.

http://www.symantec.com/avcenter/vnameinfo.html. Accessed 7th April

2008.

[138] Symantec Press Centre. Symantec warns computer

users of destructive Christmas Day virus/worm mutation.

http://www.symantec.com/region/reg_ap/press/my_001219b.html, 2000.

Accessed 26th March 2008.

[139] Peter Ször. The Art of Computer Virus Research and Defense. Addison-Wesley,

2005. ISBN 0321304543.

[140] Peter Ször and Peter Ferrie. Hunting for metamorphic. In Virus Bulletin Con-

ference Proceedings, 2001.

[141] Masahiro Tanaka. An application of information theory to biological evolution.

Journal of Theoretical Biology, 85:789–806, 1980.

[142] Timothy John Taylor. From Artificial Evolution to Artificial Life. PhD thesis,

University of Edinburgh, 1999. http://www.tim-taylor.com/papers/thesis/.

Accessed 26th March 2008.

[143] Gary P. Thompson II. The quine page.

http://www.nyx.net/~gthompso/quine.htm. Accessed 7th April 2008.

234

http://www.symantec.com/avcenter/vnameinfo.html
http://www.symantec.com/region/reg_ap/press/my_001219b.html
http://www.tim-taylor.com/papers/thesis/
http://www.nyx.net/~gthompso/quine.htm

Bibliography

[144] Gerard Torenvliet. We can’t afford it!: the devaluation of a usability term. In-

teractions, 10(4):12–17, July-August 2003.

[145] Sampo Töyssy and Marko Helenius. About malicious software in smartphones.

Journal in Computer Virology, 2(2):109–119, 2006.

[146] Wiebe van der Hoek and Michael Wooldridge. On the logic of cooper-

ation and propositional control. Artificial Intelligence, 164:81–119, 2005.

DOI:10.1016/j.artint.2005.01.003.

[147] F.G. Varela, H.R. Maturana, and R. Uribe. Autopoiesis: the organization of

living systems, its characterization and a model. Biosystems, 5:187–196, 1974.

[148] Luis P. Villarreal. Are viruses alive? Scientific American, 291(6):100–105, De-

cember 2004.

[149] John von Neumann. Theory of Self-Reproducing Automata. University of Illinois

Press, 1966. Edited by Arthur W. Burks.

[150] Andrew Walenstein, Rachit Mathur, Mohamed R. Chouchane, and Arun Lakho-

tia. Normalizing metamorphic malware using term rewriting. In IEEE Inter-

national Workshop on Source Code Analysis and Manipulation (SCAM 2006),

2006.

[151] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. A

taxonomy of computer worms. In WORM ’03: Proceedings of the 2003 ACM

Workshop on Rapid Malcode, pages 11–18. ACM Press, 2003.

[152] Bruce Weber. Life. In Edward N. Zalta, editor, The Stanford Encyclope-

dia of Philosophy. The Metaphysics Research Lab, Center for the Study of

Language and Information, Stanford University, CA 94305-4115, USA, Spring

2006. http://plato.stanford.edu/archives/spr2006/entries/life/. Ac-

cessed 26th March 2008.

[153] Matt Webster. Algebraic specification of computer viruses and their environ-

ments. In Peter Mosses, John Power, and Monika Seisenberger, editors, Selected

Papers from the First Conference on Algebra and Coalgebra in Computer Science

Young Researchers Workshop (CALCO-jnr 2005). University of Wales Swansea

Computer Science Report Series CSR 18-2005, pages 99–113, 2005.

[154] Matt Webster. ASM-based modelling of self-replicating programs. Technical

Report ULCS-05-005, Department of Computer Science, University of Liverpool,

235

http://plato.stanford.edu/archives/spr2006/entries/life/

Bibliography

UK, 2005. Presented at the 11th International Workshop on Abstract State

Machines (ASM 2004).

[155] Matt Webster and Grant Malcolm. Detection of metamorphic and virtualization-

based malware using algebraic specification. Journal in Computer Virology. DOI:

10.1007/s11416-008-0094-0. To appear.

[156] Matt Webster and Grant Malcolm. Formal affordance-based models of computer

virus reproduction. Journal in Computer Virology. DOI: 10.1007/s11416-007-

0079-4. To appear.

[157] Matt Webster and Grant Malcolm. Hierarchical components and entity-based

modelling in artificial life. In Proceedings of the Eleventh International Conference

on Artificial Life (ALIFE XI). MIT Press, Cambridge, MA. To appear.

[158] Matt Webster and Grant Malcolm. Detection of metamorphic computer viruses

using algebraic specification. Journal in Computer Virology, 2(3):149–161, De-

cember 2006. DOI: 10.1007/s11416-006-0023-z.

[159] Matt Webster and Grant Malcolm. Reproducer classification using the theory

of affordances. In Proceedings of the 2007 IEEE Symposium on Artificial Life

(CI-ALife 2007), pages 115–122. IEEE Press, 2007.

[160] Matt Webster and Grant Malcolm. Reproducer classification using the theory of

affordances: Models and examples. International Journal of Information Tech-

nology and Intelligent Computing, 2(2), 2007.

[161] Matt Webster and Grant Malcolm. Detection of metamorphic and virtualization-

based malware using algebraic specification. In Vlasti Broucek and Eric Filiol,

editors, 17th European Institute for Computer Antivirus Research Annual Con-

ference Proceedings (EICAR 2008), pages 99–119, 2008.

[162] Stephanie Wehner. Analyzing worms and network traffic using compression. Jour-

nal of Computer Security, 15(3):303–320, 2007. arXiv:cs/0504045v1 [cs.CR].

[163] Norbert Wiener. Cybernetics, or Control and Communication in the Animal and

the Machine. John Wiley & Sons, 1948.

[164] Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge, 1994. Reprint

of 1921 edition. Translated by D.F. Pears and B.F. McGuinness.

[165] Michael Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons,

2002. ISBN 047149691X.

236

Bibliography

[166] Christos Xenakis. Malicious actions against the GPRS technology. Journal in

Computer Virology, 2(2), 2006.

[167] In Seon Yoo and Ulrich Ultes-Nitsche. Non-signature based virus detection: To-

wards establishing a unknown virus detection technique using SOM. Journal in

Computer Virology, 2(3), 2006.

[168] InSeon Yoo. Visualizing Windows executable viruses using self-organizing maps.

In Proceedings of the 2004 ACM Workshop on Visualization and Data Mining

for Computer Security, 2004.

[169] Zhihong Zuo and Mingtian Zhou. Some further theoretical results about computer

viruses. The Computer Journal, 47(6):627–633, 2004.

[170] Victor Zykov, Efstathios Mytilinaios, Bryant Adams, and Hod Lipson. Self-

reproducing machines: A set of modular robot cubes accomplish a feat funda-

mental to biological systems. Nature, 435(7038):163–164, 2005.

237

Bibliography

238

Index

Abstract State Machines, 162

affordance, 121

affordances, 60, 62, 74, 123

algebra, 16, 163

algebraic specification, 16

Maude, see Maude

arbitrariness of assistance, 108

artificial life, 9–10, 90, 93, 95, 96, 100, 102,

110, 118, 157

systems, 9

astrobiology, 8

auto-catalytic sets, 183

automated theorem proving, 174

autopoiesis, 99, 111

bacteriophage, 66, 70, 72–75, 78–81, 117

behaviour monitor, 139, 181

behaviour monitoring, 121–122, 140–141

configurations, 150

biological individual, 177

compiler, 67

computer virus

x86 assembly, 136–137

as artificial life, 14, 63, 95, 157, 166

classification, 126

classifications, 153–161

definition

formal, 4

informal, 1

detection

complexity, 5, 18, 172

types, 6–8

undecidability, 5

economic cost, 3

Elk Cloner, 3

entities, 124

entity–components, 138

history, 3

hybrids, 179

metamorphic, 4, 17, 124, 173

detection methods, 45–53

dynamic analysis, 31

static analysis, 36

types, 18

source code, 66

Unix Bash script, 76, 84, 127–129

virtualization, see virtualization-based

malware

Virus.Java.Strangebrew, 126, 132

Virus.VBS.Archangel, 129–131, 136, 143–

144, 149

Virus.VBS.Baby, 141, 144

Win95/Bistro, 31

Win9x.Zmorph.A, 35, 38

writers, 2, 4

control-flow analysis, 46

Cornell self-reproducing robots, 183

cybernetics, 10

cybernetics and systems theory, 107

damaged cell, 67

239

Index

data-flow analysis, 46

ecology, 75

equivalence, 28

instruction sequences, 28, 30

semi-, 28, 42

stores, 28

equivalence in context, 29, 36, 38, 43, 172

false negative, definition, 6

false positive, definition, 6

formal approach, 10

Gödel numbering, 154, 163

Haskell, 145

hologenetics, 177

Intel 64, 22, 173

instruction syntax, 23

stack semantics, 26

Interrupt Service Routine, 136

Journal in Computer Virology, 5

k-ary malware, 183

Kerckhoff’s principle, 4

Kleene’s recursion theorem, 155

Kolmogorov complexity, 157, 179

Langton’s loops, 9, 62, 64, 90–92, 116

life

artificial, see artificial life

classification, 60

Game of, 63, 67, 93–94, 100

informal definition, 8

malware, 1

Maude, 20, 53, 77, 80, 119, 123, 144

as an interpreter, 27, 182

Intel 64, 23, 24, 55, 172

languages specified in, 57

program semantics, 22, 27

rewriting and reduction, 21

store semantics, 22, 24

memes, xi

metrics for classification, 179, 180

multiagent systems, 112

natural selection, 88

neural network, 52

ontology, 178

operational semantics, 76

Peano arithmetic, 21

photocopy, 68

process algebra, 180

Red Pill, 174

reductionism, 114

rely/guarantee, 113

reproducing programs, 1

reproduction, 8, 60

assisted, 88

conjecture, 68

theorem, 86

cellular automata, 100

classification, 96–104

examples, 60

exotic forms, 110

exotic forms of, 95

informal classification, 63

informal definition, 60

multi-, 183

sexual, 110

similar terms, 60

strategies, 179

time and information, 116

triviality, 76, 110

240

Index

unassisted, 88

conjecture, 69

logical paradox, see Rosen’s paradox

theorem, 83

reproduction model

affordance-based, 74

allowed refinements, 82

Assisted Reproduction Theorem, 87

classification, 75–76, 126, 166

by aspects, 88

classification by metrics, 149–150

computer virus, 124

formal definition, 73

non-trivial vs. trivial, 76

permissiveness, 78

refinement, 81

Unassisted Reproduction Theorem, 84,

178

unassisted vs. assisted, 75

reproduction modelling

abstraction levels, 176

challenges, 59

reproduction models

motivation, 72

Rewriting Logic Semantics Project, 57, 119

Rosen’s paradox, 97, 115

sandbox, 143, 147, 150

science vs. humanities, 10

self set, 73, 116

space exploration, 113

string matching, 151

systems theory, 10

T4 bacteriophage, see bacteriophage

theory of affordances, see affordances

Tierra, 9, 63, 102

variable

double meaning, 23

Vin , definition, 29

viral set, 73, 116, 124

virtualization-based malware, 54, 174–176

virus, 1

biological, 179, see bacteriophage

computer, see computer virus

Von Neumann, 59

model of computation, 3

reproducing automaton, 9, 62, 64, 65,

74, 101

Vout , definition, 29

worker bee, 8

worm, 1, 141, 156, 157, 159–161

241

Index

242

	Abstract
	Acknowledgements
	Preface
	Introduction
	Reproducing Programs…
	Motivations of Computer Virus Writers
	A Short History of Computer Viruses
	Academic Study of Computer Viruses
	Detection of Malware
	Static Analysis
	Dynamic Analysis

	…and Other Reproducing Things
	Formal and Informal Approaches to Problem Solving
	Overview of the Thesis
	Computer Viruses and Artificial Life
	A Note on the Inclusion of Computer Virus Code

	Formal Detection of Metamorphic Computer Viruses
	Introduction
	Algebraic Specification
	Chapter Overview

	Metamorphic Computer Viruses
	Types of Code Metamorphosis
	Junk Code Insertion
	Variable Renaming
	Unconditional Jump Insertion
	Instruction Reordering
	Pseudo-Conditional Jump Insertion
	Arithmetical/Boolean Mutation
	Payload Mutation
	Pseudo Branching

	Algebraic Specification in Maude
	Specifying Intel 64 Assembly Language
	Specifying the Syntax of Intel 64
	Specifying the Semantics of Intel 64
	Intel 64 Stack Semantics

	Using the Maude Specification as an Interpreter

	Equivalence of Instruction Sequences
	Dynamic Analysis
	Example 1: Win95/Bistro
	Example 2: Win9x.Zmorph.A

	Static Analysis
	Equivalence in Context
	Examples Using Win9x.Zmorph.A

	Applications to Detection of Metamorphic Viruses
	Dynamic Analysis
	Signature Equivalence
	Signature Semi-Equivalence

	Static Analysis
	Formally-Verified Equivalent Code Libraries
	Equivalence in Context

	Combination With Other Approaches

	Summary
	Related Work
	Control- and Data-Flow Analysis
	Semantics Template Matching
	Program Rewriting and Normalisation
	Metamorphic Engine Analysis
	Neural Network Approaches
	Industrial Approaches

	Comparisons with Related Work
	Static and Dynamic Analysis
	Formal and Informal Approaches
	Generality and Readiness for Application
	Applications Beyond Computer Virology

	Formal Affordance-based Models of Reproduction
	Introduction
	The Theory of Affordances
	Structure of the Chapter

	One Possible Classification Scheme
	Type I Reproducers
	Example: von Neumann Reproducing Automaton
	Example: Langton's Loop

	Type II Reproducers
	Example: Tape from von Neumann's Reproducing Automaton
	Example: T4 Bacteriophage
	Example: Source Code Computer Virus

	Type III Reproducers
	Example: Compiler
	Example: Damaged Cell

	Type IV Reproducers
	Example: Game of Life Gliders
	Example: The Photocopy

	Questions about Affordance-based Classification
	The Assisted Reproduction Conjecture
	The Unassisted Reproduction Conjecture
	Varying Degrees of Assistance
	Other Means of Classifying Reproducers Using Affordances

	Towards Formal Reproduction Models
	Formal Models of Reproduction
	Classifying Reproduction Models
	Refinement of Reproduction Models
	Allowed Refinements of Reproduction Models

	The Unassisted and Assisted Reproduction Theorems
	The Unassisted Reproduction Theorem
	The Assisted Reproduction Theorem
	Further Classification Using Aspects

	Further Examples
	Langton's Loop
	Conway's Game of Life Gliders

	Summary
	Related Work
	Löfgren's Approach to Modelling Reproduction
	A Universal Framework for Self-Replication
	Autopoiesis
	Reproduction in Cellular Automata
	Reproduction Classification by Dawkins
	Reproduction Classification by Taylor
	Reproduction Classification by Luksha

	Comparisons with Other Approaches
	Comparison with Löfgren's Approach
	Comparison with A Universal Framework
	Comparison with Cellular Automata
	Arbitrariness of Assistance
	Sexual Reproduction
	Triviality and Non-triviality
	Comparison with Multiagent Systems
	Comparison with Formal Methods for Concurrent Systems

	Comparison with Rosen's Ideas on Life
	Life Itself
	Rosen's Paradox

	Reproduction as Preservation of Information Over Time
	Further Application to Artificial Life

	Formal Affordance-based Models of Computer Viruses
	Introduction
	Chapter Overview

	Computer Virus Reproduction Models
	Formal Models of Computer Virus Reproduction
	Classifying Computer Viruses
	Modelling a Unix Shell Script Virus
	Modelling Virus.VBS.Archangel
	Modelling Virus.Java.Strangebrew
	Modelling an Assembly Language Computer Virus

	Automatic Classification
	Behaviour Monitoring and Classification
	Static Analysis of Virus.VBS.Baby
	Static Analysis of Virus.VBS.Archangel
	Dynamic Analysis of Virus.VBS.Baby
	Metrics for Comparing Assisted Viruses
	A Simple Metric for Comparing Assisted Viruses

	Comparing Behaviour Monitor Configurations
	Algorithms for Automatic Classification

	Summary
	Related Work
	Classification by Adleman
	Classification by Bonfante et al
	Phylogenetic Classifications
	Classification by Spafford
	Classification by Weaver et al
	Industrial Classifications

	Comparisons with Related Work
	Comparison with Formal Classifications
	Comparison with Informal Classifications
	Classification of Models versus Classification of Computer Viruses
	General Comments on Affordance-based Classification

	Conclusion
	Novel Contributions
	Directions for Future Research
	Complexity of Detecting Metamorphic Computer Viruses
	Further Detection of Metamorphic Computer Viruses
	Detection of Virtualization by Metamorphic Code Generation
	Modelling Reproduction at Different Abstraction Levels
	Metrics for Reliance on External Agency
	Strategies for Reproduction
	Advanced Metrics for Assisted Computer Virus Classification
	Evaluation of Anti-virus Techniques
	Affordance-based Models and Multi-Reproducers

	Intel 64 Specification
	Unix Computer Virus Specification
	Bacteriophage Specification
	Anti-Virus Specification
	List of Figures
	Bibliography
	Index

